
Chapter 16

Network Flow V - Min-cost flow
By Sariel Har-Peled, December 17, 2012¬ Version: 1.04

16.1 Minimum Average Cost Cycle
Let G = (V,E) be a digraph (i.e., a directed graph) with n vertices and m edges, and
ω : E → IR be a weight function on the edges. A directed cycle is closed walk C =
(v0, v1, . . . , vt), where vt = v0 and (vi → vi+1) ∈ E, for i = 0, . . . , t − 1. The average cost
of a directed cycle is AvgCost(C) = ω(C) /t =(∑e∈C ω(e)) /t.

For each k = 0, 1, . . ., and v ∈ V , let dk(v) denote the minimum length of a walk with
exactly k edges, ending at v (note, that the walk can start anywhere). So, for each v, we
have

d0(v) = 0 and dk+1(v) = min
e=(u→v)∈E

(
dk(u) + ω(e)

)
.

Thus, we can compute di(v), for i = 0, . . . , n and v ∈ V (G) in O(nm) time using dynamic
programming.

Let

MinAvgCostCycle(G) = min
C is a cycle in G

AvgCost(C)

denote the average cost of the minimum average cost cycle in G.
The following theorem is somewhat surprising.

Theorem 16.1.1. The minimum average cost of a directed cycle in G is equal to

α = min
v∈V

n−1max
k=0

dn(v) − dk(v)
n− k

.

Namely, α = MinAvgCostCycle(G).
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof : Note, that adding a quantity r to the weight of every edge of G increases the average
cost of a cycle AvgCost(C) by r. Similarly, α would also increase by r. In particular, we can
assume that the price of the minimum average cost cycle is zero. This implies that now all
cycles have non-negative (average) cost.

Thus, from this point on we assume that MinAvgCostCycle(G) = 0, and we prove that
α = 0 in this case. This in turn would imply the theorem – indeed, given a graph where
MinAvgCostCycle(G) , 0, then we will shift the costs the edges so that it is zero, use the
proof below, and then shift it back.

σ π

v

Figure 16.1: Decomposing
Pn into a path σ and a cycle
π.

MinAvgCostCycle(G) = 0 =⇒ α ≥ 0: We can rewrite α as
α = minu∈V β(u), where

β(u) = n−1max
k=0

dn(u) − dk(u)
n− k

.

Assume, that α is realized by a vertex v; that is α = β(v).
Let Pn be a walk with n edges ending at v, of length dn(v).
Since there are n vertices in G, it must be that Pn must
contain a cycle. So, let us decompose Pn into a cycle π of
length n − k and a path σ of length k (k depends on the
length of the cycle in Pn). We have that

dn(v) = ω(Pn) = ω(π) + ω(σ) ≥ ω(σ) ≥ dk(v),

since ω(π) ≥ 0 as π is a cycle (and we assumed that all cycles have zero or positive cost).
As such, we have dn(v) − dk(v) ≥ 0. As such, dn(v)−dk(v)

n−k
≥ 0. Let

β(v) = n−1max
j=0

dn(v) − dj(v)
n− j

≥ dn(v) − dk(v)
n− k

≥ 0.

Now, α = β(v) ≥ 0, by the choice of v.

v0ξ

w
τ

ρ

C

MinAvgCostCycle(G) = 0 =⇒ α ≤ 0: Let C = (v0, v1, . . . , vt)
be the directed cycle of weight 0 in the graph. Observe, that
min∞

j=0 dj(v0) must be realized (for the first time) by an index
r < n, since if it is longer, we can always shorten it by remov-
ing cycles and improve its price (since cycles have non-negative
price). Let ξ denote this walk of length r ending at v0. Let w be
a vertex on C reached by walking n− r edges on C starting from
v0, and let τ denote this walk (i.e., |τ | = n− r). We have that

dn(w) ≤ ω
(
ξ || τ

)
= dr(v0) + ω(τ) , (16.1)

where ξ || τ denotes the path formed by concatenating the path τ to ξ.
Similarly, let ρ be the walk formed by walking on C from w all the way back to v0. Note

that τ || ρ goes around C several times, and as such, ω(τ || ρ) = 0, as ω(C) = 0. Next, for

2

any k, since the shortest path with k edges arriving to w can be extended to a path that
arrives to v0, by concatenating ρ to it, we have that

dk(w) + ω(ρ) ≥ dk+|ρ|(v0) ≥ dr(v0) ≥ dn(w) − ω(τ) ,
by Eq. (16.1). Rearranging, we have that ω(ρ) ≥ dn(w) − ω(τ) − dk(w). Namely, we have

∀k 0 = ω(τ || ρ) = ω(ρ) + ω(τ) ≥
(
dn(w) − ω(τ) − dk(w)

)
+ ω(τ) = dn(w) − dk(w).

=⇒ ∀k dn(w) − dk(w)
n− k

≤ 0

=⇒ β(w) = n−1max
k=0

dn(w) − dk(w)
n− k

≤ 0.

As such, α = min
v∈V (G)

β(v) ≤ β(w) ≤ 0, and we conclude that α = 0.

Finding the minimum average cost cycle is now not too hard. We compute the vertex v
that realizes α in Theorem 16.1.1. Next, we add −α to all the edges in the graph. We now
know that we are looking for a cycle with price 0. We update the values di(v) to agree with
the new weights of the edges.

Now, v is the vertex realizing the quantity 0 = α = minu∈V maxn−1
k=0

dn(u)−dk(u)
n−k

. Namely,
we have that for the vertex v it holds

n−1max
k=0

dn(v) − dk(v)
n− k

= 0 =⇒ ∀k ∈ {0, . . . , n− 1} dn(v) − dk(v)
n− k

≤ 0

=⇒ ∀k ∈ {0, . . . , n− 1} dn(v) − dk(v) ≤ 0.
This implies that dn(v) ≤ di(v), for all i. Now, we repeat the proof of Theorem 16.1.1. Let
Pn be the path with n edges realizing dn(v). We decompose it into a path π of length k and
a cycle τ . We know that ω(τ) ≥ 0 (since all cycles have non-negative weights now). Now,
ω(π) ≥ dk(v). As such, ω(τ) = dn(v) − ω(π) ≤ dn(v) − dk(v) ≤ 0, as π is a path of length k
ending at v, and its cost is ≥ dk(v). Namely, the cycle τ has ω(τ) ≤ 0, and it the required
cycle and computing it required O(nm) time.

Note, that the above reweighting in fact was not necessary. All we have to do is to
compute the node realizing α, extract Pn, and compute the cycle in Pn, and we are guaranteed
by the above argumentation, that this is the cheapest average cycle.
Corollary 16.1.2. Given a direct graph G with n vertices and m edges, and a weight func-
tion ω(·) on the edges, one can compute the cycle with minimum average cost in O(nm)
time.

16.2 Potentials
In general computing the shortest path in a graph that have negative weights is harder than
just using the Dijkstra algorithm (that works only for graphs with non-negative weights on
its edges). One can use Bellman-Ford algorithm in this case, but it considerably slower (i.e.,

http://en.wikipedia.org/wiki/Bellman-Ford_algorithm

3

http://en.wikipedia.org/wiki/Bellman-Ford_algorithm

it takes O(mn) time). We next present a case where one can still use Dijkstra algorithm,
with slight modifications.

The following is only required in the analysis of the minimum-cost flow algorithm we
present later in this chapter. We describe it here in full detail since its simple and interesting.

For a directed graph G = (V,E) with weight w(·) on the edges, let dω(s, t) denote the
length of the shortest path between s and t in G under the weight function w. Note, that w
might assign negative weights to edges in G.

A potential p(·) is a function that assigns a real value to each vertex of G, such that if
e = (u → v) ∈ G then w(e) ≥ p(v) − p(u).
Lemma 16.2.1. (i) There exists a potential p(·) for G if and only if G has no negative
cycles (with respect to w(·)).

(ii) Given a potential function p(·), for an edge e = (u → v) ∈ E(G), let ℓ(e) = w(e) −
p(v) + p(u). Then ℓ(·) is non-negative for the edges in the graph and for any pair of vertices
s, t ∈ V (G), we have that the shortest path π realizing dℓ(s, t) also realizes dω(s, t).

(iii) Given G and a potential function p(·), one can compute the shortest path from s to
all the vertices of G in O(n log n+m) time, where G has n vertices and m edges

Proof : (i) Consider a cycle C, and assume there is a potential p(·) for G, and observe that

w(C) =
∑

(u→v)∈E(C)
w(e) ≥

∑
(u→v)∈E(C)

(p(v) − p(u)) = 0,

as required.
For a vertex v ∈ V (G), let p(v) denote the shortest walk that ends at v in G. We claim

that p(v) is a potential. Since G does not have negative cycles, the quantity p(v) is well
defined. Observe that p(v) ≤ p(u) +w(u → v) since we can always continue a walk to u into
v by traversing (u → v). Thus, p(v) − p(u) ≤ w(u → v), as required.

(ii) Since ℓ(e) = w(e) − p(v) + p(u) we have that w(e) ≥ p(v) − p(u) since p(·) is a
potential function. As such w(e) − p(v) + p(u) ≥ 0, as required.

As for the other claim, observe that for any path π in G starting at s and ending at t we
have that

ℓ(π) =
∑

e=(u→v)∈π

(w(e) − p(v) + p(u)) = w(π) + p(s) − p(t),

which implies that dℓ(s, t) = dω(s, t) + p(s) − p(t). Implying the claim.
(iii) Just use the Dijkstra algorithm on the distances defined by ℓ(·). The shortest paths

are preserved under this distance by (ii), and this distance function is always positive.

16.3 Minimum cost flow
Given a network flow G = (V,E) with source s and sink t, capacities c(·) on the edges, a real
number ϕ, and a cost function κ(·) on the edges. The cost of a flow f is defined to be

cost(f) =
∑
e∈E

κ(e) ∗ f(e).

4

The minimum-cost s-t flow problem ask to find the flow f that minimizes the cost and
has value ϕ.

It would be easier to look on the problem of minimum-cost circulation problem.
Here, we are given instead of ϕ a lower-bound ℓ(·) on the flow on every edge (and the regular
upper bound c(·) on the capacities of the edges). All the flow coming into a node must leave
this node. It is easy to verify that if we can solve the minimum-cost circulation problem,
then we can solve the min-cost flow problem. Thus, we will concentrate on the min-cost
circulation problem.

An important technicality is that all the circulations we discuss here have zero demands
on the vertices. As such, a circulation can be conceptually considered to be a flow going
around in cycles in the graph without ever stopping. In particular, for these circulations,
the conservation of flow property should hold for all the vertices in the graph.

The residual graph of f is the graph Gf =(V,Ef) where

Ef =
{
e = (u → v) ∈ V × V

∣∣∣ f(e) < c(e) or f
(
e−1

)
> ℓ

(
e−1

)}
.

where e−1 = (v → u) if e = (u → v). Note, that the definition of the residual network takes
into account the lower-bound on the capacity of the edges.

Assumption 16.3.1. To simplify the exposition, we will assume that if (u → v) ∈ E(G)
then (v → u) < E(G), for all u, v ∈ V (G). This can be easily enforced by introducing a
vertex in the middle of every edge of G. This is acceptable, since we are more concerned
with solving the problem at hand in polynomial time, than the exact complexity. Note, that
our discussion can be extended to handle the slightly more general case, with a bit of care.

We extend the cost function to be anti-symmetric; namely,

∀ (u → v) ∈ Ef κ
(

(u → v)
)

= −κ
(

(v → u)
)
.

Consider a directed cycle C in Gf . For an edge e = (u → v) ∈ E, we define

χC(e) =

1 e ∈ C

−1 e−1 = (v → u) ∈ C

0 otherwise;

that is, we pay 1 if e is in C and −1 if we travel e in the “wrong” direction.
The cost of a directed cycle C in Gf is defined as

κ(C) =
∑
e∈C

κ (e) .

We will refer to a circulation that comply with the capacity and lower-bounds constraints
as being valid. A function that just comply with the conservation property (i.e., all incoming
flow into a vertex leaves it), is a weak circulation. In particular, a weak circulation might
not comply with the capacity and lower bounds constraints of the given instance, and as
such is not a valid circulation.

We need the following easy technical lemmas.

5

Lemma 16.3.2. Let f and g be two valid circulations in G = (V,E). Consider the function
h = g − f. Then, h is a weak circulation, and if h(u → v) > 0 then the edge (u → v) ∈ Gf.

Proof : The fact that h is a circulation is trivial, as it is the difference between two circulations,
and as such the same amount of flow that comes into a vertex leaves it, and thus it is a
circulation. (Note, that h might not be a valid circulation, since it might not comply with
the lower-bounds on the edges.)

Observe, that if h(u → v) is negative, then h(v → u) = −h(u → v) by the anti-symmetry
of f and g, which implies the same property holds for h.

Consider an arbitrary edge e = (u → v) such that h(u → v) > 0.
There are two possibilities. First, if e = (u → v) ∈ E, and f(e) < c(e), then the claim

trivially holds, since then e ∈ Gf . Thus, consider the case when f(e) = c(e), but then
h(e) = g(e) − f(e) ≤ 0. Which contradicts our assumption that h(u → v) > 0.

The second possibility, is that e = (u → v) < E. But then e−1 = (v → u) must be in
E, and it holds 0 > h (e−1) = g (e−1) − f (e−1). Implying that f (e−1) > g (e−1) ≥ ℓ (e−1).
Namely, there is a flow by f in G going in the direction of e−1 which larger than the lower
bound. Since we can return this flow in the other direction, it must be that e ∈ Gf .

Lemma 16.3.3. Let f be a circulation in a graph G. Then, f can be decomposed into at
most m cycles, C1, . . . ,Cm, such that, for any e ∈ E(G), we have

f(e) =
t∑

i=1
λi · χCi

(e),

where λ1, . . . , λt > 0 and t ≤ m, where m is the number of edges in G.

Proof : Since f is a circulation, and the amount of flow into a node is equal to the amount of
flow leaving the node, it follows that as long as f not zero, one can find a cycle in f. Indeed,
start with a vertex which has non-zero amount of flow into it, and walk on an adjacent edge
that has positive flow on it. Repeat this process, till you visit a vertex that was already
visited. Now, extract the cycle contained in this walk.

Let C1 be such a cycle, and observe that every edge of C1 has positive flow on it, let λ1
be the smallest amount of flow on any edge of C1, and let e1 denote this edge. Consider the
new flow g = f −λ1 ·χC1 . Clearly, g has zero flow on e1, and it is a circulation. Thus, we can
remove e1 from G, and let H denote the new graph. By induction, applied to g on H, the
flow g can be decomposed into m − 1 cycles with positive coefficients. Putting these cycles
together with λ1 and C1 implies the claim.

Theorem 16.3.4. A flow f is a minimum cost feasible circulation if and only if each directed
cycle of Gf has nonnegative cost.

Proof : Let C be a negative cost cycle in Gf . Then, we can circulate more flow on C and get
a flow with smaller price. In particular, let ε > 0 be a sufficiently small constant, such that

6

g = f + ε ∗ χC is still a feasible circulation (observe, that since the edges of C are Gf , all of
them have residual capacity that can be used to this end). Now, we have that

cost(g) = cost(f) +
∑
e∈C

κ(e) ∗ ε = cost(f) + ε ∗
∑
e∈C

κ(e) = cost(f) + ε ∗ κ(C) < cost(f),

since κ(C) < 0, which is a contradiction to the minimality of f.
As for the other direction, assume that all the cycles in Gf have non-negative cost. Then,

let g be any feasible circulation. Consider the circulation h = g − f. By Lemma 16.3.2, all
the edges used by h are in Gf , and by Lemma 16.3.3 we can find t ≤ |E(Gf)| cycles C1, . . . ,Ct

in Gf , and coefficients λ1, . . . , λt, such that

h(e) =
t∑

i=1
λiχCi

(e).

We have that

cost(g) − cost(f) = cost(h) = cost
(

t∑
i=1

λiχCi

)
=

t∑
i=1

λicost(χCi
) =

t∑
i=1

λiκ (Ci) ≥ 0,

as κ(Ci) ≥ 0, since there are no negative cycles in Gf . This implies that cost(g) ≥ cost(f).
Namely, f is a minimum-cost circulation.

16.4 A Strongly Polynomial Time Algorithm for Min-
Cost Flow

The algorithm would start from a feasible circulation f. We know how to compute such a
flow f using the standard max-flow algorithm. At each iteration, it would find the cycle C
of minimum average cost cycle in Gf (using the algorithm of Section 16.1). If the cost of
C is non-negative, we are done since we had arrived to the minimum cost circulation, by
Theorem 16.3.4.

Otherwise, we circulate as much flow as possible along C (without violating the lower-
bound constraints and capacity constraints), and reduce the price of the flow f. By Corol-
lary 16.1.2, we can compute such a cycle in O(mn) time. Since the cost of the flow is
monotonically decreasing the algorithm would terminate if all the number involved are inte-
gers. But we will show in fact that his algorithm performs a polynomial number of iterations
in n and m.

It is striking how simple is this algorithm, and the fact that it works in polynomial time.
The analysis is somewhat more painful.

16.5 Analysis of the Algorithm

7

f, g, h, i Flows or circulations
Gf The residual graph for f
c(e) The capacity of the flow on e
ℓ(e) The lower-bound (i.e., demand) on the flow on e
cost(f) The overall cost of the flow f
κ(e) The cost of sending one unit of flow on e
ψ(e) The reduced cost of e

Figure 16.2: Notation used.

To analyze the above algorithm,
let fi be the flow in the beginning
of the ith iteration. Let Ci be
the cycle used in the ith iteration.
For a flow f, let Cf the minimum
average-length cycle of Gf , and let
µ(f) = κ(Cf)/ |Cf | denote the av-
erage “cost” per edge of Cf .

The following lemma, states that
we are making “progress” in each
iteration of the algorithm.
Lemma 16.5.1. Let f be a flow, and let g the flow resulting from applying the cycle C = Cf
to it. Then, µ(g) ≥ µ(f).

Proof : Assume for the sake of contradiction, that µ(g) < µ(f). Namely, we have
κ(Cg)
|Cg|

<
κ(Cf)
|Cf |

. (16.2)

Now, the only difference between Gf and Gg are the edges of Cf . In particular, some edges
of Cf might disappear from Gg, as they are being used in g to their full capacity. Also, all
the edges in the opposite direction to Cf will be present in Gg.

Now, Cg must use at least one of the new edges in Gg, since otherwise this would contradict
the minimality of Cf (i.e., we could use Cg in Gf and get a cheaper average cost cycle than
Cf). Let U be the set of new edges of Gg that are being used by Cg and are not present in
Gf . Let U−1 =

{
e−1

∣∣∣ e ∈ U
}
. Clearly, all the edges of U−1 appear in Cf .

Now, consider the cycle π = Cf ∪ Cg. We have that the average of π is

α = κ(Cf) + κ(Cg)
|Cf | + |Cg|

< max
(
κ(Cg)
|Cg|

,
κ(Cf)
|Cf |

)
= µ(f) ,

by Eq. (16.2). We can write π is a union of k edge-disjoint cycles σ1, . . . , σk and some 2-
cycles. A 2-cycle is formed by a pair of edges e and e−1 where e ∈ U and e−1 ∈ U−1. Clearly,
the cost of these 2-cycles is zero. Thus, since the cycles σ1, . . . , σk have no edges in U , it
follows that they are all contained in Gf . We have

κ(Cf) + κ(Cg) =
∑

i

κ(σi) + 0.

Thus, there is some non-negative integer constant c, such that

α = κ(Cf) + κ(Cg)
|Cf | + |Cg|

=
∑

i κ(σi)
c+∑

i |σi|
≥
∑

i κ(σi)∑
i |σi|

,

since α is negative (since α < µ(f) < 0 as otherwise the algorithm would had already
terminated). Namely, µ(f) > (∑i κ(σi)) /(

∑
i |σi|). Which implies that there is a cycle σr,

such that µ(f) > κ(σr)/|σr| and this cycle is contained in Gf . But this is a contradiction to
the minimality of µ(f).

8

16.5.1 Reduced cost induced by a circulation
Conceptually, consider the function µ(f) to be a potential function that increases as the
algorithm progresses. To make further progress in our analysis, it would be convenient to
consider a reweighting of the edges of G, in such a way that preserves the weights of cycles.

Given a circulation f, we are going to define a different cost function on the edges which
is induced by f. To begin with, let β(u → v) = κ(u → v) − µ(f). Note, that under the cost
function α, the cheapest cycle has price 0 in G (since the average cost of an edge in the
cheapest average cycle has price zero). Namely, G has no negative cycles under β. Thus, for
every vertex v ∈ V (G), let d(v) denote the length of the shortest walk that ends at v. The
function d(v) is a potential in G, by Lemma 16.2.1, and as such

d(v) − d(u) ≤ β(u → v) = κ(u → v) − µ(f) . (16.3)

Next, let the reduced cost of (u → v) (in relation to f) be

ψ(u → v) = κ(u → v) + d(u) − d(v).

In particular, Eq. (16.3) implies that

∀ (u → v) ∈ E(Gf) ψ(u → v) = κ(u → v) + d(u) − d(v) ≥ µ(f) . (16.4)

Namely, the reduced cost of any edge (u → v) is at least µ(f).
Note that ψ(v → u) = κ(v → u) + d(v) − d(u) = −κ(u → v) + d(v) − d(u) = −ψ(u → v)

(i.e., it is anti-symmetric). Also, for any cycle C in G, we have that κ(C) = ψ(C), since the
contribution of the potential d(·) cancels out.

The idea is that now we think about the algorithm as running with the reduced cost
instead of the regular costs. Since the costs of cycles under the original cost and the reduced
costs are the same, negative cycles are negative in both costs. The advantage is that the
reduced cost is more useful for our purposes.

16.5.2 Bounding the number of iterations
Lemma 16.5.2. Let f be a flow used in the ith iteration of the algorithm, let g be the flow
used in the (i+m)th iteration, where m is the number of edges in G. Furthermore, assume
that the algorithm performed at least one more iteration on g. Then, µ(g) ≥ (1 − 1/n)µ(f).

Proof : Let C0, . . . ,Cm−1 be the m cycles used in computing g from f. Let ψ(·) be the reduced
cost function induced by f.

If a cycle has only negative reduced cost edges, then after it is applied to the flow, one
of these edges disappear from the residual graph, and the reverse edge (with positive reduced
cost) appears in the residual graph. As such, if all the edges of these cycles have negative
reduced costs, then Gg has no negative reduced cost edge, and as such µ(g) ≥ 0. But the
algorithm stops as soon as the average cost cycle becomes positive. A contradiction to our
assumption that the algorithm performs at least another iteration.

9

Let Ch be the first cycle in this sequence, such that it contains an edge e′, such that its
reduced cost is positive; that is ψ(e′) ≥ 0. Note, that Ch has most n edges. We have that

κ(Ch) = ψ(Ch) =
∑

e∈Ch

ψ(e) = ψ(e′) +
∑

e∈Ch,e,e′
ψ(e) ≥ 0 +(|Ch| − 1)µ(f) ,

by Eq. (16.4). Namely, the average cost of Ch is

0 > µ(fh) = κ(Ch)
|Ch|

≥ |Ch| − 1
|Ch|

µ(f) ≥
(

1 − 1
n

)
µ(f) .

The claim now easily follows from Lemma 16.5.1.

To bound the running time of the algorithm, we will argue that after sufficient number of
iterations edges start disappearing from the residual network and never show up again in the
residual network. Since there are only 2m possible edges, this would imply the termination
of the algorithm.

Observation 16.5.3. We have that (1 − 1/n)n ≤ (exp(−1/n))n ≤ 1/e, since 1 − x ≤ e−x,
for all x ≥ 0, as can be easily verified.

Lemma 16.5.4. Let f be the circulation maintained by the algorithm at iteration ρ. Then
there exists an edge e in the residual network Gf such that it never appears in the residual
networks of circulations maintained by the algorithm, for iterations larger than ρ+ t, where
t = 2nm ⌈lnn⌉.

Proof : Let g be the flow used by the algorithm at iteration ρ + t. We define the reduced
cost over the edges of G, as induced by the flow g. Namely,

ψ(u → v) = κ(u → v) + d(u) − d(v),

where d(u) is the length of the shortest walk ending at u where the weight of edge (u → w)
is κ(u → w) − µ(g).

flow in iteration
f ρ
g ρ+ t
h ρ+ t+ τ

Now, conceptually, we are running the algorithm using this reduced
cost function over the edges, and consider the minimum average cost
cycle at iteration ρ with cost α = µ(f). There must be an edge
e ∈ E(Gf), such that ψ(e) ≤ α. (Note, that α is a negative quantity,
as otherwise the algorithm would have terminated at iteration ρ.)

We have that, at iteration ρ+ t, it holds

µ(g) ≥ α ∗
(

1 − 1
n

)t

≥ α ∗ exp(−2m ⌈lnn⌉) ≥ α

2n
, (16.5)

by Lemma 16.5.2 and Observation 16.5.3 and since α < 0. On the other hand, by Eq. (16.4),
we know that for all the edges f in E(Gg), it holds ψ(f) ≥ µ(g) ≥ α/2n. As such, e can not
be an edge of Gg since ψ(e) ≤ α. Namely, it must be that g(e) = c(e).

10

So, assume that at a later iteration, say ρ+ t+ τ , the edge e reappeared in the residual
graph. Let h be the flow at the (ρ+ t+ τ)th iteration, and let Gh be the residual graph. It
must be that h(e) < c(e) = g(e).

Now, consider the circulation i = g − h. It has a positive flow on the edge e, since
i(e) = g(e) − h(e) > 0. In particular, there is a directed cycle C of positive flow of i in Gi that
includes e, as implied by Lemma 16.3.3. Note, that Lemma 16.3.2 implies that C is also a
cycle of Gh.

Now, the edges of C−1 are present in Gg. To see that, observe that for every edge g ∈ C,
we have that 0 < i(g) = g(g) − h(g) ≤ g(g) − ℓ(g). Namely, g(g) > ℓ(g) and as such
g−1 ∈ E(Gg). As such, by Eq. (16.4), we have ψ(g−1) ≥ µ(g). This implies

∀g ∈ C ψ(g) = −ψ
(
g−1

)
≤ −µ(g) ≤ − α

2n
,

by Eq. (16.5). Since C is a cycle of Gh, we have

κ(C) = ψ(C) = ψ(e) + ψ(C \ {e}) ≤ α + (|C| − 1) ·
(

− α

2n

)
<
α

2
.

Namely, the average cost of the cycle C, which is present in Gh, is κ(C)/ |C| < α/(2n).
On the other hand, the minimum average cost cycle in Gh has average price µ(h) ≥ µ(g) ≥

α
2n

, by Lemma 16.5.1. A contradiction, since we found a cycle C in Gh which is cheaper.

We are now ready for the “kill” – since one edge disappears forever every O(mn log n)
iterations, it follows that after O(m2n log n) iterations the algorithm terminates. Every
iteration takes O(mn) time, by Corollary 16.1.2. Putting everything together, we get the
following.

Theorem 16.5.5. Given a digraph G with n vertices and m edges, lower bound and upper
bound on the flow of each edge, and a cost associated with each edge, then one can compute
a valid circulation of minimum-cost in O(m3n2 log n) time.

16.6 Bibliographical Notes
The minimum average cost cycle algorithm, of Section 16.1, is due to Karp [Kar78].

The description here follows very roughly the description of [Sch04]. The first strongly
polynomial time algorithm for minimum-cost circulation is due to Éva Tardos [Tar85]. The
algorithm we show is an improved version due to Andrew Goldberg and Robert Tarjan
[GT89]. Initial research on this problem can be traced back to the 1940s, so it took almost
fifty years to find a satisfactory solution to this problem.

Bibliography
[GT89] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling

negative cycles. J. Assoc. Comput. Mach., 36(4):873–886, 1989.

11

http://www.acm.org/jacm/

[Kar78] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Math., 23:309–311, 1978.

[Sch04] A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency (Algorithms
and Combinatorics). Springer, July 2004.

[Tar85] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combina-
torica, 5(3):247–255, 1985.

12

	16 Network Flow V - Min-cost flow
	16.1 Minimum Average Cost Cycle
	16.2 Potentials
	16.3 Minimum cost flow
	16.4 A Strongly Polynomial Time Algorithm for Min-Cost Flow
	16.5 Analysis of the Algorithm
	16.5.1 Reduced cost induced by a circulation
	16.5.2 Bounding the number of iterations

	16.6 Bibliographical Notes

	Bibliography

