
Chapter 15

Network Flow IV - Applications II
By Sariel Har-Peled, December 17, 2012¬ Version: 0.2

15.1 Airline Scheduling
Problem 15.1.1. Given information about flights that an airline needs to provide, generate
a profitable schedule.

The input is a detailed information about “legs” of flight that the airline need to serve.
We denote this set of flights by F. We would like to find the minimum number of airplanes
needed to carry out this schedule. For an example of possible input, see Figure 15.1 (i).

1: Boston (depart 6 A.M.) - Washington DC (arrive 7 A.M,).
2: Urbana (depart 7 A.M.) - Champaign (arrive 8 A.M.)
3: Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
4: Urbana (depart 11 A.M.) - San Francisco (arrive 2 P.M.)
5: San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:15 P.M.)
6: Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.).

1

2

3

4

5

6

(i) (ii)

Figure 15.1: (i) a set F of flights that have to be served, and (ii) the corresponding graph G
representing these flights.

We can use the same airplane for two segments i and j if the destination of i is the
origin of the segment j and there is enough time in between the two flights for required

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

maintenance. Alternatively, the airplane can fly from dest(i) to origin(j) (assuming that the
time constraints are satisfied).

Example 15.1.2. As a concrete example, consider the flights:
1. Boston (depart 6 A.M.) - Washington D.C. (arrive 7 A.M,).
2. Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
3. Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

This schedule can be served by a single airplane by adding the leg “Los Angeles (depart 12
noon)- Las Vegas (1 P,M.)” to this schedule.

15.1.1 Modeling the problem
The idea is to model the feasibility constraints by a graph. Specifically, G is going to be a
directed graph over the flight legs. For i and j, two given flight legs, the edge (i → j) will
be present in the graph G if the same airplane can serve both i and j; namely, the same
airplane can perform leg i and afterwards serves the leg j.

Thus, the graph G is acyclic. Indeed, since we can have an edge (i → j) only if the flight
j comes after the flight i (in time), it follows that we can not have cycles.

We need to decide if all the required legs can be served using only k airplanes?

15.1.2 Solution
The idea is to perform a reduction of this problem to the computation of circulation. Specif-
ically, we construct a graph H, as follows:

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

−k

s
k
t

k

Figure 15.2: The resulting graph H for the
instance of airline scheduling from Fig-
ure 15.1.

• For every leg i, we introduce two vertices
ui, vi ∈ V (H). We also add a source vertex s
and a sink vertex t to H. We set the demand
at t to be k, and the demand at s to be −k
(i.e., k units of flow are leaving s and need to
arrive to t).

• Each flight on the list must be served.
This is forced by introducing an edge ei =
(ui → vi), for each leg i. We also set the lower
bound on ei to be 1, and the capacity on ei to
be 1 (i.e., ℓ(ei) = 1 and c(ei) = 1).

• If the same plane can perform flight i
and j (i.e., (i → j) ∈ E(G)) then add an edge
(vi → uj) with capacity 1 to H (with no lower
bound constraint).

• Since any airplane can start the day with
flight i, we add an edge (s → ui) with capacity 1 to H, for all flights i.

2

• Similarly, any airplane can end the day by serving the flight j. Thus, we add edge
(vj → t) with capacity 1 to G, for all flights j.

• If we have extra planes, we do not have to use them. As such, we introduce a “overflow”
edge (s → t) with capacity k, that can carry over all the unneeded airplanes from s directly
to t.

Let H denote the resulting graph. See Figure 15.2 for an example.

Lemma 15.1.3. There is a way to perform all flights of F using at most k planes if and
only if there is a feasible circulation in the network H.

Proof : Assume there is a way to perform the flights using k′ ≤ k flights. Consider such a
feasible schedule. The schedule of an airplane in this schedule defines a path π in the network
H that starts at s and ends at t, and we send one unit of flow on each such path. We also
send k − k′ units of flow on the edge (s → t). Note, that since the schedule is feasible, all
legs are being served by some airplane. As such, all the “middle” edges with lower-bound 1
are being satisfied. Thus, this results is a valid circulation in H that satisfies all the given
constraints.

As for the other direction, consider a feasible circulation in H. This is an integer valued
circulation by the Integrality theorem. Suppose that k′ units of flow are sent between s and
t (ignoring the flow on the edge (s → t)). All the edges of H (except (s → t)) have capacity
1, and as such the circulation on all other edges is either zero or one (by the Integrality
theorem). We convert this into k′ paths by repeatedly traversing from the vertex s to the
destination t, removing the edges we are using in each such path after extracting it (as we
did for the k disjoint paths problem). Since we never use an edge twice, and H is acyclic, it
follows that we would extract k′ paths. Each of those paths correspond to one airplane, and
the overall schedule for the airplanes is valid, since all required legs are being served (by the
lower-bound constraint).

Extensions and limitations. There are a lot of other considerations that we ignored in
the above problem: (i) airplanes have to undergo long term maintenance treatments every
once in awhile, (ii) one needs to allocate crew to these flights, (iii) schedule differ between
days, and (iv) ultimately we interested in maximizing revenue (a much more fluffy concept
and much harder to explicitly describe).

In particular, while network flow is used in practice, real world problems are complicated,
and network flow can capture only a few aspects. More than undermining the usefulness of
network flow, this emphasize the complexity of real-world problems.

15.2 Image Segmentation
In the image segmentation problem, the input is an image, and we would like to partition
it into background and foreground. For an example, see Figure 15.3.

3

(i) (ii)

Figure 15.3: The (i) input image, and (ii) a possible segmentation of the image.

The input is a bitmap on a grid where every grid
node represents a pixel. We covert this grid into a di-
rected graph G, by interpreting every edge of the grid
as two directed edges. See the figure on the right to see
how the resulting graph looks like.

Specifically, the input for out problem is as follows:
• A bitmap of size N × N , with an associated di-

rected graph G = (V, E).
• For every pixel i, we have a value fi ≥ 0, which

is an estimate of the likelihood of this pixel to be in
foreground (i.e., the larger fi is the more probable that
it is in the foreground)

• For every pixel i, we have (similarly) an estimate
bi of the likelihood of pixel i to be in background.

• For every two adjacent pixels i and j we have a separation penalty pij, which is the
“price” of separating i from j. This quantity is defined only for adjacent pixels in the bitmap.
(For the sake of simplicity of exposition we assume that pij = pji. Note, however, that this
assumption is not necessary for our discussion.)

Problem 15.2.1. Given input as above, partition V (the set of pixels) into two disjoint
subsets F and B, such that

q(F, B) =
∑
i∈F

fi +
∑
i∈B

bi −
∑

(i,j)∈E,|F ∩{i,j}|=1
pij.

is maximized.

4

We can rewrite q(F, B) as:

q(F, B) =
∑
i∈F

fi +
∑
j∈B

bj −
∑

(i,j)∈E,|F ∩{i,j}|=1
pij

=
∑
i∈v

(fi + bi) −

∑
i∈B

fi +
∑
j∈F

bj +
∑

(i,j)∈E,|F ∩{i,j}|=1
pij

 .

Since the term ∑
i∈v(fi + bi) is a constant, maximizing q(F, B) is equivalent to minimizing

u(F, B), where

u(F, B) =
∑
i∈B

fi +
∑
j∈F

bj +
∑

(i,j)∈E,|F ∩{i,j}|=1
pij. (15.1)

How do we compute this partition. Well, the basic idea is to compute a minimum cut
in a graph such that its price would correspond to u(F, B). Before dwelling into the exact
details, it is useful to play around with some toy examples to get some intuition. Note, that
we are using the max-flow algorithm as an algorithm for computing minimum directed cut.

s i t
fi biTo begin with, consider a graph having a source s, a vertex i, and

a sink t. We set the price of (s → i) to be fi and the price of the edge
(i → t) to be bi. Clearly, there are two possible cuts in the graph, either ({s, i} , {t}) (with
a price bi) or ({s} , {i, t}) (with a price fi). In particular, every path of length 2 in the
graph between s and t forces the algorithm computing the minimum-cut (via network flow)
to choose one of the edges, to the cut, where the algorithm “prefers” the edge with lower
price.

s
i

t
fi

bi

j bj
fj

Next, consider a bitmap with two vertices i an j that are adjacent.
Clearly, minimizing the first two terms in Eq. (15.1) is easy, by generating
length two parallel paths between s and t through i and j. See figure
on the right. Clearly, the price of a cut in this graph is exactly the price of the partition
of {i, j} into background and foreground sets. However, this ignores the separation penalty
pij.

s
ifi

bi

j bj
fj

tpij pij

To this end, we introduce two new edges (i → j) and (j → i)
into the graph and set their price to be pij. Clearly, a price of a
cut in the graph can be interpreted as the value of u(F, B) of the
corresponding sets F and B, since all the edges in the segmentation from nodes of F to
nodes of B are contributing their separation price to the cut price. Thus, if we extend this
idea to the directed graph G, the minimum-cut in the resulting graph would corresponds to
the required segmentation.

Let us recap: Given the directed grid graph G = (V, E) we add two special source and
sink vertices, denoted by s and t respectively. Next, for all the pixels i ∈ V , we add an edge
ei = (s → i) to the graph, setting its capacity to be c(ei) = fi. Similarly, we add the edge
e′

i = (j → t) with capacity c(e′
i) = bi. Similarly, for every pair of vertices i.j in that grid

that are adjacent, we assign the cost pij to the edges (i → j) and (j → i). Let H denote the
resulting graph.

The following lemma, follows by the above discussion.

5

Lemma 15.2.2. A minimum cut (F, B) in H minimizes u(F, B).

Using the minimum-cut max-flow theorem, we have:

Theorem 15.2.3. One can solve the segmentation problem, in polynomial time, by comput-
ing the max flow in the graph H.

15.3 Project Selection
You have a small company which can carry out some projects out of a set of projects P .
Associated with each project i ∈ P is a revenue pi, where pi > 0 is a profitable project and
pi < 0 is a losing project. To make things interesting, there is dependency between projects.
Namely, one has to complete some “infrastructure” projects before one is able to do other
projects. Namely, you are provided with a graph G = (P, E) such that (i → j) ∈ E if and
only if j is a prerequisite for i.

Definition 15.3.1. A set X ⊂ P is feasible if for all i ∈ X, all the prerequisites of i are
also in X. Formally, for all i ∈ X, with an edge (i → j) ∈ E, we have j ∈ X.

The profit associated with a set of projects X ⊆ P is profit(X) = ∑
i∈X pi.

Problem 15.3.2 (Project Selection Problem). Select a feasible set of projects maxi-
mizing the overall profit.

The idea of the solution is to reduce the problem to a minimum-cut in a graph, in a
similar fashion to what we did in the image segmentation problem.

15.3.1 The reduction
The reduction works by adding two vertices s and t to the graph G, we also perform the
following modifications:

• For all projects i ∈ P with positive revenue (i.e., pi > 0) add the ei = (s → i) to G
and set the capacity of the edge to be c(ei) = pi, where s is the added source vertex.

• Similarly, for all projects j ∈ P , with negative revenue (i.e., pj < 0) add the edge
e′

j = (j → t) to G and set the edge capacity to c(e′
j) = −pj, where t is the added sink

vertex.
• Compute a bound on the max flow (and thus also profit) in this network: C =∑

i∈P,pi>0 pi.
• Set capacity of all other edges in G to 4C (these are the dependency edges in the

project, and intuitively they are too expensive to be “broken” by a cut).
Let H denote the resulting network.

Let X ⊆ P Be a set of feasible projects, and let X ′ = X ∪ {s} and Y ′ = (P \ X) ∪ {t}.
Consider the s-t cut (X ′, Y ′) in H. Note, that no edge of E(G) is in (X ′, Y ′) since X is a
feasible set (i.e., there is no u ∈ X ′ and v ∈ Y ′ such that (u → v) ∈ E(G)).

6

Lemma 15.3.3. The capacity of the cut (X ′, Y ′), as defined by a feasible project set X, is
c(X ′, Y ′) = C − ∑

i∈X pi = C − profit(X).

Proof : The edges of H are either:
(i) original edges of G (conceptually, they have price +∞),
(ii) edges emanating from s, and
(iii) edges entering t.

Since X is feasible, it follows that no edges of type (i) contribute to the cut. The edges
entering t contribute to the cut the value

β =
∑

i∈X and pi<0
−pi.

The edges leaving the source s contribute

γ =
∑

i<X and pi>0
pi =

∑
i∈P,pi>0

pi −
∑

i∈X and pi>0
pi = C −

∑
i∈X and pi>0

pi,

by the definition of C.
The capacity of the cut (X ′, Y ′) is

β + γ =
∑

i∈X and pi<0
(−pi) +

C −
∑

i∈X and pi>0
pi

 = C −
∑
i∈X

pi = C − profit(X),

as claimed.

Lemma 15.3.4. If (X ′, Y ′) is a cut with capacity at most C in G, then the set X = X ′ \{s}
is a feasible set of projects.

Namely, cuts (X ′, Y ′) of capacity ≤ C in H corresponds one-to-one to feasible sets which
are profitable.

Proof : Since c(X ′, Y ′) ≤ C it must not cut any of the edges of G, since the price of such an
edge is 4C. As such, X must be a feasible set.

Putting everything together, we are looking for a feasible set X that maximizes profit(X) =∑
i∈X pi. This corresponds to a set X ′ = X ∪{s} of vertices in H that minimizes C −∑

i∈X pi,
which is also the cut capacity (X ′, Y ′). Thus, computing a minimum-cut in H corresponds
to computing the most profitable feasible set of projects.

Theorem 15.3.5. If (X ′, Y ′) is a minimum cut in H then X = X ′ \ {s} is an optimum so-
lution to the project selection problem. In particular, using network flow the optimal solution
can be computed in polynomial time.

Proof : Indeed, we use network flow to compute the minimum cut in the resulting graph H.
Note, that it is quite possible that the most profitable project is still a net loss.

7

15.4 Baseball elimination
There is a baseball league taking place and it is nearing the end of the season. One would
like to know which teams are still candidates to winning the season.

Example 15.4.1. There 4 teams that have the following number of wins:

New York: 92, Baltimore: 91, Toronto: 91, Boston: 90,

and there are 5 games remaining (all pairs except New York and Boston).
We would like to decide if Boston can still win the season? Namely, can Boston finish

the season with as many point as anybody else? (We are assuming here that at every game
the winning team gets one point and the losing team gets nada.­)

First analysis. Observe, that Boston can get at most 92 wins. In particular, if New
York wins any game then it is over since New-York would have 93 points.

Thus, to Boston to have any hope it must be that both Baltimore wins against New
York and Toronto wins against New York. At this point in time, both teams have 92 points.
But now, they play against each other, and one of them would get 93 wins. So Boston is
eliminated!

Second analysis. As before, Boston can get at most 92 wins. All three other teams
gets X = 92 + 91 + 91 + (5 − 2) points together by the end of the league. As such, one of
these three teams will get ≥ ⌈X/3⌉ = 93 points, and as such Boston is eliminated.

While the analysis of the above example is very cute, it is too tedious to be done each
time we want to solve this problem. Not to mention that it is unclear how to extend these
analyses to other cases.

15.4.1 Problem definition
Problem 15.4.2. The input is a set S of teams, where for every team x ∈ S, the team has
wx points accumulated so far. For every pair of teams x, y ∈ S we know that there are gxy

games remaining between x and y. Given a specific team z, we would like to decide if z is
eliminated?

Alternatively, is there away such that z would get as many wins as anybody else by the
end of the season?

15.4.2 Solution
First, we can assume that z wins all its remaining games, and let m be the number of points
z has in this case. Our purpose now is to build a network flow so we can verify that no other
team must get more than m points.

­nada = nothing.

8

To this end, let s be the source (i.e., the source of wins). For every remaining game, a
flow of one unit would go from s to one of the teams playing it. Every team can have at
most m − wx flow from it to the target. If the max flow in this network has value

α =
∑

x,y,z,x<y

gxy

(which is the maximum flow possible) then there is a scenario such that all other teams gets
at most m points and z can win the season. Negating this statement, we have that if the
maximum flow is smaller than α then z is eliminated, since there must be a team that gets
more than m points.

Construction. Let S ′ = S \ {z} be the set of teams, and let

α =
∑

{x,y}⊆S′

gxy. (15.2)

We create a network flow G. For every team x ∈ S ′ we add a vertex vx to the network G.
We also add the source and sink vertices, s and t, respectively, to G.

For every pair of teams x, y ∈ S ′, such that gxy > 0 we
create a node uxy, and add an edge (s → uxy) with capacity
gxy to G. We also add the edge (uxy → vx) and (uxy → vy) with
infinite capacity to G. Finally, for each team x we add the edge
(vx → t) with capacity m − wx to G. How the relevant edges
look like for a pair of teams x and y is depicted on the right.
Analysis. If there is a flow of value α in G then there is a way that all teams get at most
m wins. Similarly, if there exists a scenario such that z ties or gets first place then we can
translate this into a flow in G of value α. This implies the following result.

Theorem 15.4.3. Team z has been eliminated if and only if the maximum flow in G has
value strictly smaller than α. Thus, we can test in polynomial time if z has been eliminated.

15.4.3 A compact proof of a team being eliminated
Interestingly, once z is eliminated, we can generate a compact proof of this fact.

Theorem 15.4.4. Suppose that team z has been eliminated. Then there exists a “proof” of
this fact of the following form:

1. The team z can finish with at most m wins.
2. There is a set of teams Ŝ ⊂ S so that

∑
s∈Ŝ

wx +
∑

{x,y}⊆Ŝ

gxy > m
∣∣∣Ŝ∣∣∣.

(And hence one of the teams in Ŝ must end with strictly more than m wins.)

9

Proof : If z is eliminated then the max flow in G has value γ, which is smaller than α, see
Eq. (15.2). By the minimum-cut max-flow theorem, there exists a minimum cut (S, T) of
capacity γ in G, and let Ŝ =

{
x

∣∣∣ vx ∈ S
}

Claim 15.4.5. For any two teams x and y for which the vertex uxy exists, we have
that uxy ∈ S if and only if both x and y are in Ŝ.

Proof :
(
x < Ŝ or y < Ŝ

)
=⇒ uxy < S : If x is not in Ŝ then vx is in T . But

then, if uxy is in S the edge (uxy → vx) is in the cut. However, this edge has infinite
capacity, which implies this cut is not a minimum cut (in particular, (S, T) is a cut
with capacity smaller than α). As such, in such a case uxy must be in T . This
implies that if either x or y are not in Ŝ then it must be that uxy ∈ T . (And as
such uxy < S.)
x ∈ Ŝ and y ∈ Ŝ =⇒ uxy ∈ S : Assume that both
x and y are in Ŝ, then vx and vy are in S. We need
to prove that uxy ∈ S. If uxy ∈ T then consider the
new cut formed by moving uxy to S. For the new cut
(S ′, T ′) we have

c(S ′, T ′) = c(S, T) − c
(
(s → uxy)

)
.

Namely, the cut (S ′, T ′) has a lower capacity than the minimum cut (S, T), which
is a contradiction. See figure on the right for this impossible cut. We conclude that
uxy ∈ S.

The above argumentation implies that edges of the type (uxy → vx) can not be in the
cut (S, T). As such, there are two type of edges in the cut (S, T): (i) (vx → t), for x ∈ Ŝ,
and (ii) (s → uxy) where at least one of x or y is not in Ŝ. As such, the capacity of the cut
(S, T) is

c(S, T) =
∑
x∈Ŝ

(m − wx) +
∑

{x,y}1Ŝ

gxy = m
∣∣∣Ŝ∣∣∣ −

∑
x∈Ŝ

wx +

α −
∑

{x,y}⊆Ŝ

gxy

 .

However, c(S, T) = γ < α, and it follows that

m
∣∣∣Ŝ∣∣∣ −

∑
x∈Ŝ

wx −
∑

{x,y}⊆Ŝ

gxy < α − α = 0.

Namely,
∑
x∈Ŝ

wx +
∑

{x,y}⊆Ŝ

gxy > m
∣∣∣Ŝ∣∣∣, as claimed.

10

	15 Network Flow IV - Applications II
	15.1 Airline Scheduling
	15.1.1 Modeling the problem
	15.1.2 Solution

	15.2 Image Segmentation
	15.3 Project Selection
	15.3.1 The reduction

	15.4 Baseball elimination
	15.4.1 Problem definition
	15.4.2 Solution
	15.4.3 A compact proof of a team being eliminated

