
Chapter 14

Network Flow III - Applications
By Sariel Har-Peled, December 17, 2012¬ Version: 0.1

14.1 Edge disjoint paths

14.1.1 Edge-disjoint paths in a directed graphs
Question 14.1.1. Given a graph G (either directed or undirected), two vertices s and t,
and a parameter k, the task is to compute k paths from s to t in G, such that they are edge
disjoint; namely, these paths do not share an edge.

To solve this problem, we will convert G (assume G is a directed graph for the time being)
into a network flow graph H, such that every edge has capacity 1. Find the maximum flow
in G (between s and t). We claim that the value of the maximum flow in the network H, is
equal to the number of edge disjoint paths in G.

Lemma 14.1.2. If there are k edge disjoint paths in G between s and t, then the maximum
flow in H is at least k.

Proof : Given k such edge disjoint paths, push one unit of flow along each such path. The
resulting flow is legal in h and it has value k.

Definition 14.1.3 (0/1-flow). A flow f is a 0/1-flow if every edge has either no flow on
it, or one unit of flow.

Lemma 14.1.4. Let f be a 0/1 flow in a network H with flow value µ. Then there are µ
edge disjoint paths between s and t in H.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof : By induction on the number of edges in H that has one unit of flow assigned to them
by f . If µ = 0 then there is nothing to prove.

Otherwise, start traversing the graph H from s traveling only along edges with flow 1
assigned to them by f . We mark such an edge as used, and do not allow one to travel on
such an edge again. There are two possibilities:

(i) We reached the target vertex t. In this case, we take this path, add it to the set of
output paths, and reduce the flow along the edges of the generated path π to 0. Let H ′ be
the resulting flow network and f ′ the resulting flow. We have |f ′| = µ − 1, H ′ has less edges,
and by induction, it has µ − 1 edge disjoint paths in H ′ between s and t. Together with π
this forms µ such paths.

(ii) We visit a vertex v for the second time. In this case, our traversal contains a cycle C,
of edges in H that have flow 1 on them. We set the flow along the edges of C to 0 and use
induction on the remaining graph (since it has less edges with flow 1 on them). The value
of the flow f did not change by removing C, and as such it follows by induction that there
are µ edge disjoint paths between s and t in H.

Since the graph G is simple, there are at most n = |V (H)| edges that leave s. As such,
the maximum flow in H is n. Thus, applying the Ford-Fulkerson algorithm, takes O(mn)
time. The extraction of the paths can also be done in linear time by applying the algorithm
in the proof of Lemma 14.1.4. As such, we get:

Theorem 14.1.5. Given a directed graph G with n vertices and m edges, and two vertices
s and t, one can compute the maximum number of edge disjoint paths between s and t in H,
in O(mn) time.

As a consequence we get the following cute result:
Lemma 14.1.6. In a directed graph G with nodes s and t the maximum number of edge
disjoint s − t paths is equal to the minimum number of edges whose removal separates s from
t.

Proof : Let U be a collection of edge-disjoint paths from s to t in G. If we remove a set F
of edges from G and separate s from t, then it must be that every path in U uses at least
one edge of F . Thus, the number of edge-disjoint paths is bounded by the number of edges
needed to be removed to separate s and t. Namely, |U | ≤ |F |.

As for the other direction, let F be a set of edges thats its removal separates s and t. We
claim that the set F form a cut in G between s and t. Indeed, let S be the set of all vertices
in G that are reachable from s without using an edge of F . Clearly, if F is minimal then
it must be all the edges of the cut (S, T) (in particular, if F contains some edge which is
not in (S, T) we can remove it and get a smaller separating set of edges). In particular, the
smallest set F with this separating property has the same size as the minimum cut between
s and t in G, which is by the max-flow mincut theorem, also the maximum flow in the graph
G (where every edge has capacity 1).

But then, by Theorem 14.1.5, there are |F | edge disjoint paths in G (since |F | is the
amount of the maximum flow).

2

14.1.2 Edge-disjoint paths in undirected graphs
We would like to solve the s-t disjoint path problem for an undirected graph.

Problem 14.1.7. Given undirected graph G, s and t, find the maximum number of edge-
disjoint paths in G between s and t.

The natural approach is to duplicate every edge in the undirected graph G, and get a
(new) directed graph H. Next, apply the algorithm of Section 14.1.1 to H.

So compute for H the maximum flow f (where every edge has capacity 1). The problem is
the flow f might use simultaneously the two edges (u → v) and (v → u). Observe, however,
that in such case we can remove both edges from the flow f . In the resulting flow is legal
and has the same value. As such, if we repeatedly remove those “double edges” from the
flow f , the resulting flow f ′ has the same value. Next, we extract the edge disjoint paths
from the graph, and the resulting paths are now edge disjoint in the original graph.

Lemma 14.1.8. There are k edge-disjoint paths in an undirected graph G from s to t if and
only if the maximum value of an s − t flow in the directed version H of G is at least k.
Furthermore, the Ford-Fulkerson algorithm can be used to find the maximum set of disjoint
s-t paths in G in O(mn) time.

14.2 Circulations with demands

14.2.1 Circulations with demands

−3

−3

2

4

3 3

2
2

2

Figure 14.1: Instance
of circulation with de-
mands.

We next modify and extend the network flow problem. Let
G = (V, E) be a directed graph with capacities on the edges.
Each vertex v has a demand dv:

• dv > 0: sink requiring dv flow into this
node.

• dv < 0: source with −dv units of flow
leaving it.

• dv = 0: regular node.
Let S denote all the source vertices and T denote all the

sink/target vertices.
For a concrete example of an instance of circulation with

demands, see figure on the right.

3

−3

−3

2

4

3 3

2
2

2

1/
2/

2/
2/

2/

Figure 14.2: A valid
circulation for the in-
stance of Figure 14.1.

Definition 14.2.1. A circulation with demands {dv} is a
function f that assigns nonnegative real values to the edges of
G, such that:

• Capacity condition: ∀e ∈ E we have f(e) ≤ c(e).

• Conservation condition: ∀v ∈ V we have f in(v)−f out(v) =
dv.

Here, for a vertex v, let f in(v) denotes the flow into v and f out(v)
denotes the flow out of v.

Problem 14.2.2. Is there a circulation that comply with the
demand requirements?

See Figure 14.1 and Figure 14.2 for an example.
Lemma 14.2.3. If there is a feasible circulation with demands {dv}, then ∑

v dv = 0.
Proof : Since it is a circulation, we have that dv = f in(v)−f out(v). Summing over all vertices:∑

v dv = ∑
v f in(v) − ∑

v f out(v). The flow on every edge is summed twice, one with positive
sign, one with negative sign. As such,∑

v

dv =
∑

v

f in(v) −
∑

v

f out(v) = 0,

which implies the claim.

In particular, this implies that there is a feasible solution only if
D =

∑
v,dv>0

dv =
∑

v,dv<0
−dv.

14.2.1.1 The algorithm for computing a circulation

The algorithm performs the following steps:
(A) G = (V, E) - input flow network with demands on vertices.
(B) Check that D = ∑

v,dv>0 dv = ∑
v,dv<0 −dv.

(C) Create a new super source s, and connect it to all the vertices v with dv < 0. Set
the capacity of the edge s → v to be −dv.

(D) Create a new super target t. Connect to it all the vertices u with du > 0. Set
capacity on the new edge u → t to be du.

(E) On the resulting network flow network H (which is a standard instance of network
flow). Compute maximum flow on H from s to t. If it is equal to D, then there
is a valid circulation, and it is the flow restricted to the original graph. Otherwise,
there is no valid circulation.

Theorem 14.2.4. There is a feasible circulation with demands {dv} in G if and only if the
maximum s-t flow in H has value D. If all capacities and demands in G are integers, and
there is a feasible circulation, then there is a feasible circulation that is integer valued.

4

14.3 Circulations with demands and lower bounds
Assume that in addition to specifying a circulation and demands on a network G, we also
specify for each edge a lower bound on how much flow should be on each edge. Namely, for
every edge e ∈ E(G), we specify ℓ(e) ≤ c(e), which is a lower bound to how much flow must
be on this edge. As before we assume all numbers are integers.

We need now to compute a flow f that fill all the demands on the vertices, and that for
any edge e, we have ℓ(e) ≤ f(e) ≤ c(e). The question is how to compute such a flow?

Let use start from the most naive flow, which transfer on every edge, exactly its lower
bound. This is a valid flow as far as capacities and lower bounds, but of course, it might
violate the demands. Formally, let f0(e) = ℓ(e), for all e ∈ E(G). Note that f0 does not even
satisfy the conservation rule:

Lv = f in
0 (v) − f out

0 (v) =
∑

e into v

ℓ(e) −
∑

e out of v

ℓ(e).

If Lv = dv, then we are happy, since this flow satisfies the required demand. Otherwise,
there is imbalance at v, and we need to fix it.

Formally, we set a new demand d′
v = dv − Lv for every node v, and the capacity of every

edge e to be c′(e) = c(e) − ℓ(e). Let G′ denote the new network with those capacities and
demands (note, that the lower bounds had “disappeared”). If we can find a circulation f ′ on
G′ that satisfies the new demands, then clearly, the flow f = f0 + f ′, is a legal circulation,
it satisfies the demands and the lower bounds.

But finding such a circulation, is something we already know how to do, using the al-
gorithm of Theorem 14.2.4. Thus, it follows that we can compute a circulation with lower
bounds.

Lemma 14.3.1. There is a feasible circulation in G if and only if there is a feasible circu-
lation in G′.

If all demands, capacities, and lower bounds in G are integers, and there is a feasible
circulation, then there is a feasible circulation that is integer valued.

Proof : Let f ′ be a circulation in G′. Let f(e) = f0(e)+f ′(e). Clearly, f satisfies the capacity
condition in G, and the lower bounds. Furthermore,

f in(v) − f out(v) =
∑

e into v

(ℓ(e) + f ′(e)) −
∑

e out of v

(ℓ(e) + f ′(e)) = Lv +(dv − Lv) = dv.

As such f satisfies the demand conditions on G.
Similarly, let f be a valid circulation in G. Then it is easy to check that f ′(e) = f(e)−ℓ(e)

is a valid circulation for G′.

5

14.4 Applications

14.4.1 Survey design
We would like to design a survey of products used by consumers (i.e., “Consumer i: what did
you think of product j?”). The ith consumer agreed in advance to answer a certain number
of questions in the range [ci, c′

i]. Similarly, for each product j we would like to have at least
pj opinions about it, but not more than p′

j. Each consumer can be asked about a subset
of the products which they consumed. In particular, we assume that we know in advance
all the products each consumer used, and the above constraints. The question is how to
assign questions to consumers, so that we get all the information we want to get, and every
consumer is being asked a valid number of questions.

The idea of our solution is to reduce the design of the survey to the problem of computing
a circulation in graph. First, we build a bipartite graph having consumers on one side, and
products on the other side. Next, we insert the edge between consumer i and product j if the
product was used by this consumer. The capacity of this edge is going to be 1. Intuitively,
we are going to compute a flow in this network which is going to be an integer number.
As such, every edge would be assigned either 0 or 1, where 1 is interpreted as asking the
consumer about this product.

s

0, 1

ci, c
′

i

t

pj, p
′

j

The next step, is to connect a source to all the con-
sumers, where the edge (s → i) has lower bound ci and
upper bound c′

i. Similarly, we connect all the products to
the destination t, where (j → t) has lower bound pj and
upper bound p′

j. We would like to compute a flow from
s to t in this network that comply with the constraints.
However, we only know how to compute a circulation on
such a network. To overcome this, we create an edge
with infinite capacity between t and s. Now, we are only
looking for a valid circulation in the resulting graph G which complies with the aforemen-
tioned constraints. See figure on the right for an example of G.

Given a circulation f in G it is straightforward to interpret it as a survey design (i.e., all
middle edges with flow 1 are questions to be asked in the survey). Similarly, one can verify
that given a valid survey, it can be interpreted as a valid circulation in G. Thus, computing
circulation in G indeed solves our problem.

We summarize:

Lemma 14.4.1. Given n consumers and u products with their constraints c1, c′
1, c2, c′

2, . . . , cn, c′
n,

p1, p′
1, . . . , pu, p′

u and a list of length m of which products where used by which consumers.
An algorithm can compute a valid survey under these constraints, if such a survey exists, in
time O((n + u)m2).

6

	14 Network Flow III - Applications
	14.1 Edge disjoint paths
	14.1.1 Edge-disjoint paths in a directed graphs
	14.1.2 Edge-disjoint paths in undirected graphs

	14.2 Circulations with demands
	14.2.1 Circulations with demands

	14.3 Circulations with demands and lower bounds
	14.4 Applications
	14.4.1 Survey design

