
Chapter 13

Network Flow II - The Vengeance
By Sariel Har-Peled, December 17, 2012¬ Version: 0.11

13.1 Accountability

Figure 13.1: http://www.cs.berkeley.edu/
~jrs/

The comic in Figure 13.1 is by Jonathan
Shewchuk and is referring to the Calvin
and Hobbes comics.

People that do not know maximum
flows: essentially everybody.

Average salary on earth < $5, 000
People that know maximum flow - most

of them work in programming related jobs
and make at least $10, 000 a year.

Salary of people that learned maxi-
mum flows: > $10, 000

Salary of people that did not learn
maximum flows: < $5, 000

Salary of people that know Latin: 0
(unemployed).

Thus, by just learning maximum flows (and not knowing Latin) you can
double your future salary!

13.2 The Ford-Fulkerson Method
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://www.cs.berkeley.edu/~jrs/
http://www.cs.berkeley.edu/~jrs/
http://creativecommons.org/licenses/by-nc/3.0/

mtdFordFulkerson(G,s,t)
Initialize flow f to zero
while ∃ path π from s to t in Gf do

cf (π)← min
{
cf (u, v)

∣∣∣ (u→ v) ∈ π
}

for ∀ (u→ v) ∈ π do
f(u, v)← f(u, v) + cf (π)
f(v, u)← f(v, u)− cf (π)

The mtdFordFulkerson method is de-
picted on the right.
Lemma 13.2.1. If the capacities on the
edges of G are integers, then mtdFord-
Fulkerson runs in O(m |f ∗|) time, where
|f ∗| is the amount of flow in the maximum
flow and m = |E(G)|.

Proof : Observe that the mtdFordFulk-
erson method performs only subtraction,
addition and min operations. Thus, if it finds an augmenting path π, then cf (π) must be
a positive integer number. Namely, cf (π) ≥ 1. Thus, |f ∗| must be an integer number (by
induction), and each iteration of the algorithm improves the flow by at least 1. It follows
that after |f ∗| iterations the algorithm stops. Each iteration takes O(m + n) = O(m) time,
as can be easily verified.

The following observation is an easy consequence of our discussion.

Observation 13.2.2 (Integrality theorem). If the capacity function c takes on only in-
tegral values, then the maximum flow f produced by the mtdFordFulkerson method has the
property that |f | is integer-valued. Moreover, for all vertices u and v, the value of f(u, v) is
also an integer.

13.3 The Edmonds-Karp algorithm
The Edmonds-Karp algorithm works by modifying the mtdFordFulkerson method so
that it always returns the shortest augmenting path in Gf (i.e., path with smallest number
of edges). This is implemented by finding π using BFS in Gf .

Definition 13.3.1. For a flow f , let δf (v) be the length of the shortest path from the source
s to v in the residual graph Gf . Each edge is considered to be of length 1.

We will shortly prove that for any vertex v ∈ V \{s, t} the function δf (v), in the residual
network Gf , increases monotonically with each flow augmentation. We delay proving this
(key) technical fact (see Lemma 13.3.5 below), and first show its implications.

Lemma 13.3.2. During the execution of the Edmonds-Karp algorithm, an edge (u→ v)
might disappear (and thus reappear) from Gf at most n/2 times throughout the execution of
the algorithm, where n = |V (G)|.

Proof : Consider an iteration when the edge (u→ v) disappears. Clearly, in this iteration the
edge (u→ v) appeared in the augmenting path π. Furthermore, this edge was fully utilized;
namely, cf (π) = cf (uv), where f is the flow in the beginning of the iteration when it dis-
appeared. We continue running Edmonds-Karp till (u→ v) “magically” reappears. This

2

means that in the iteration before (u→ v) reappeared in the residual graph, the algorithm
handled an augmenting path σ that contained the edge (v → u). Let g be the flow used to
compute σ. We have, by the monotonicity of δ(·) [i.e., Lemma 13.3.5 below], that

δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2

as Edmonds-Karp is always augmenting along the shortest path. Namely, the distance of
s to u had increased by 2 between its disappearance and its (magical?) reappearance. Since
δ0(u) ≥ 0 and the maximum value of δ?(u) is n, it follows that (u→ v) can disappear and
reappear at most n/2 times during the execution of the Edmonds-Karp algorithm.

The careful reader would observe that δ?(u) might become infinity at some point during
the algorithm execution (i.e., u is no longer reachable from s). If so, by monotonicity, the
edge (u→ v) would never appear again, in the residual graph, in any future iteration of the
algorithm.

Observation 13.3.3. Every time we add an augmenting path during the execution of the
Edmonds-Karp algorithm, at least one edge disappears from the residual graph G?. Indeed,
every edge that realizes the residual capacity of the augmenting path will disappear once we
push the maximum possible flow along this path.

Lemma 13.3.4. The Edmonds-Karp algorithm handles at most O(nm) augmenting paths
before it stops. Its running time is O(nm2), where n = |V (G)| and m = |E(G)|.

Proof : Every edge might disappear at most n/2 times during Edmonds-Karp execution,
by Lemma 13.3.2. Thus, there are at most nm/2 edge disappearances during the execution
of the Edmonds-Karp algorithm. At each iteration, we perform path augmentation, and
at least one edge disappears along it from the residual graph. Thus, the Edmonds-Karp
algorithm perform at most O(mn) iterations.

Performing a single iteration of the algorithm boils down to computing an Augmenting
path. Computing such a path takes O(m) time as we have to perform BFS to find the
augmenting path. It follows, that the overall running time of the algorithm is O(nm2).

We still need to prove the aforementioned monotonicity property. (This is the only part
in our discussion of network flow where the argument gets a bit tedious. So bear with us,
after all, you are going to double your salary here.)

Lemma 13.3.5. If the Edmonds-Karp algorithm is run on a flow network G = (V, E)
with source s and sink t, then for all vertices v ∈ V \ {s, t}, the shortest path distance δf (v)
in the residual network Gf increases monotonically with each flow augmentation.

Proof : Assume, for the sake of contradiction, that this is false. Consider the flow just after
the first iteration when this claim failed. Let f denote the flow before this (fatal) iteration
was performed, and let g be the flow after.

3

(i) (ii) (iii)

Figure 13.2: (i) A bipartite graph. (ii) A maximum matching in this graph. (iii) A perfect
matching (in a different graph).

Let v be the vertex such that δg(v) is minimal, among all vertices for which the mono-
tonicity fails. Formally, this is the vertex v where δg(v) is minimal and δg(v) < δf (v).

Let π = s → · · · → u → v be the shortest path in Gg from s to v. Clearly, (u→ v) ∈
E(Gg), and thus δg(u) = δg(v)− 1.

By the choice of v it must be that δg(u) ≥ δf (u), since otherwise the monotonicity
property fails for u, and u is closer to s than v in Gg, and this, in turn, contradicts our choice
of v as being the closest vertex to s that fails the monotonicity property. There are now two
possibilities:

(i) If (u→ v) ∈ E(Gf) then

δf (v) ≤ δf (u) + 1 ≤ δg(u) + 1 = δg(v)− 1 + 1 = δg(v).

This contradicts our assumptions that δf (v) > δg(v).
(ii) If (u→ v) is not in E(Gf) then the augmenting path π used in computing g from

f contains the edge (v → u). Indeed, the edge (u→ v) reappeared in the residual
graph Gg (while not being present in Gf). The only way this can happens is if the
augmenting path π pushed a flow in the other direction on the edge (u→ v). Namely,
(v → u) ∈ π. However, the algorithm always augment along the shortest path. Thus,
since by assumption δg(v) < δf (v), we have

δf (u) = δf (v) + 1 > δg(v) = δg(u) + 1,

by the definition of u.
Thus, δf (u) > δg(u) (i.e., the monotonicity property fails for u) and δg(u) < δg(v). A
contradiction to the choice of v.

13.4 Applications and extensions for Network Flow

13.4.1 Maximum Bipartite Matching

4

s

1

t

1

1

Figure 13.3

Definition 13.4.1. For an undirected graph G = (V, E) a
matching is a subset of edges M ⊆ E such that for all ver-
tices v ∈ V , at most one edge of M is incident on v.

A maximum matching is a matching M such that for any
matching M ′ we have |M | ≥ |M ′|.

A matching is perfect if it involves all vertices. See Figure 13.2
for examples of these definitions.

Theorem 13.4.2. One can compute maximum bipartite matching using network flow in
O(nm2) time, for a bipartite graph with n vertices and m edges.

Proof : Given a bipartite graph G, we create a new graph with a new source on the left side
and sink on the right, see Figure 13.3.

Direct all edges from left to right and set the capacity of all edges to 1. Let H be the
resulting flow network. It is now easy to verify that by the Integrality theorem, a flow in
H is either 0 or one on every edge, and thus a flow of value k in H is just a collection of k
vertex disjoint paths between s and t in G, which corresponds to a matching in G of size k.

Similarly, given a matching of size k in G, it can be easily interpreted as realizing a flow
in H of size k. Thus, computing a maximum flow in H results in computing a maximum
matching in G. The running time of the algorithm is O(nm2).

13.4.2 Extension: Multiple Sources and Sinks
Given a flow network with several sources and sinks, how can we compute maximum flow
on such a network?

The idea is to create a super source, that send all its flow to the old sources and similarly
create a super sink that receives all the flow. See Figure 13.4. Clearly, computing flow in
both networks in equivalent.

t1

t2

s1

s2
∞

∞

∞

s
∞ t1

t2

s1

s2
t

(i) (ii)

Figure 13.4: (i) A flow network with several sources and sinks, and (ii) an equivalent flow
network with a single source and sink.

5

	13 Network Flow II - The Vengeance
	13.1 Accountability
	13.2 The Ford-Fulkerson Method
	13.3 The Edmonds-Karp algorithm
	13.4 Applications and extensions for Network Flow
	13.4.1 Maximum Bipartite Matching
	13.4.2 Extension: Multiple Sources and Sinks

