
Chapter 12

Network Flow
By Sariel Har-Peled, December 17, 2012¬ Version: 0.27

12.1 Network Flow
We would like to transfer as much “merchandise” as possible from one point to another. For
example, we have a wireless network, and one would like to transfer a large file from s to t.
The network have limited capacity, and one would like to compute the maximum amount of
information one can transfer.

Figure 12.1: A network flow.

Specifically, there is a network and capacities asso-
ciated with each connection in the network. The ques-
tion is how much “flow” can you transfer from a source
s into a sink t. Note, that here we think about the flow
as being splitable, so that it can travel from the source
to the sink along several parallel paths simultaneously.
So, think about our network as being a network of pipe
moving water from the source the sink (the capacities
are how much water can a pipe transfer in a given unit
of time). On the other hand, in the internet traffic is packet based and splitting is less easy
to do.

Definition 12.1.1. Let G = (V, E) be a directed graph. For every edge (u→ v) ∈ E(G)
we have an associated edge capacity c(u, v), which is a non-negative number. If the edge
(u→ v) < G then c(u, v) = 0. In addition, there is a source vertex s and a target sink
vertex t.

The entities G, s, t and c(·) together form a flow network or simply a network. An
example of such a flow network is depicted in Figure 12.1.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
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We would like to transfer as much flow from the
source s to the sink t. Specifically, all the flow starts
from the source vertex, and ends up in the sink. The
flow on an edge is a non-negative quantity that can not
exceed the capacity constraint for this edge. One possi-
ble flow is depicted on the left figure, where the numbers
a/b on an edge denote a flow of a units on an edge with

capacity at most b.
We next formalize our notation of a flow.

Definition 12.1.2 (flow). A flow in a network is a function f(·, ·) on the edges of G such
that:

(A) Bounded by capacity: For any edge (u→ v) ∈ E, we have f(u, v) ≤ c(u, v).
Specifically, the amount of flow between u and v on the edge (u→ v) never exceeds
its capacity c(u, v).

(B) Anti symmetry: For any u, v we have f(u, v) = −f(v, u).
(C) There are two special vertices: (i) the source vertex s (all flow starts from the

source), and the sink vertex t (all the flow ends in the sink).
(D) Conservation of flow: For any vertex u ∈ V \ {s, t}, we have

∑
v

f(u, v) = 0.

(Namely, for any internal node, all the flow that flows into a vertex leaves this
vertex.)

The amount of flow (or simply flow) of f , called the value of f , is |f | =
∑
v∈V

f(s, v).

Note, that a flow on edge can be negative (i.e., there is a positive flow flowing on this
edge in the other direction).

Problem 12.1.3 (Maximum flow). Given a network G find the maximum flow in G.
Namely, compute a legal flow f such that |f | is maximized.

12.2 Some properties of flows and residual networks
For two sets X, Y ⊆ V , let f(X, Y ) = ∑

x∈X,y∈Y f(x, y). We will slightly abuse the notations
and refer to f

(
{v} , S

)
by f(v, S), where v ∈ V (G).

Observation 12.2.1. |f | = f(s, V ).

Lemma 12.2.2. For a flow f , the following properties holds:
(i) ∀u ∈ V (G) we have f(u, u) = 0,

(ii) ∀X ⊆ V we have f(X, X) = 0,
(iii) ∀X, Y ⊆ V we have f(X, Y ) = −f(Y, X),

This law for electric circuits is known as Kirchhoff’s Current Law.
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(iv) ∀X, Y, Z ⊆ V such that X ∩ Y = ∅ we have that f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) and
f(Z, X ∪ Y ) = f(Z, X) + f(Z, Y ).

(v) For all u ∈ V \ {s, t}, we have f(u, V ) = f(V, u) = 0.

Proof : Property (i) holds since (u→ u) it not an edge in the graph, and as such its flow is
zero. As for property (ii), we have

f(X, X) =
∑

{u,v}⊆X,u,v

(f(u, v) + f(v, u)) +
∑
u∈X

f(u, u)

=
∑

{u,v}⊆X,u,v

(f(u, v)− f(u, v)) +
∑
u∈X

0 = 0,

by the anti-symmetry property of flow (Definition 12.1.2 (B)).
Property (iii) holds immediately by the anti-symmetry of flow, as

f(X, Y ) =
∑

x∈X,y∈Y

f(x, y) = −
∑

x∈X,y∈Y

f(y, x) = −f(Y, X) .

(iv) This case follows immediately from definition.
Finally (v) is a restatement of the conservation of flow property.

Claim 12.2.3. |f | = f(V, t).

Proof : We have:

|f | = f(s, V ) = f
(
V \(V \ {s}) , V

)
= f(V, V )− f(V \ {s} , V )
= −f(V \ {s} , V ) = f(V, V \ {s})
= f(V, t) + f(V, V \ {s, t})
= f(V, t) +

∑
u∈V \{s,t}

f(V, u)

= f(V, t) +
∑

u∈V \{s,t}
0

= f(V, t),

since f(V, V ) = 0 by Lemma 12.2.2 (i) and f(V, u) = 0 by Lemma 12.2.2 (iv).

Definition 12.2.4. Given capacity c and flow f , the residual capacity of an edge (u→ v)
is

cf (u, v) = c(u, v)− f(u, v).

Intuitively, the residual capacity cf (u, v) on an edge (u→ v) is the amount of unused capacity
on (u→ v). We can next construct a graph with all edges that are not being fully used by
f , and as such can serve to improve f .
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(i) (ii)

Figure 12.2: (i) A flow network, and (ii) the resulting residual network. Note, that f(u, w) =
−f(w, u) = −1 and as such cf (u, w) = 10− (−1) = 11.

Definition 12.2.5. Given f , G = (V, E) and c, as above, the residual graph (or residual
network) of G and f is the the graph Gf =(V, Ef ) where

Ef =
{
(u, v) ∈ V × V

∣∣∣ cf (u, v) > 0
}

.

Note, that by the definition of Ef , it might be that an edge (u→ v) that appears in E
might induce two edges in Ef . Indeed, consider an edge (u→ v) such that f(u, v) < c(u, v)
and (v → u) is not an edge of G. Clearly, cf (u, v) = c(u, v)− f(u, v) > 0 and (u→ v) ∈ Ef .
Also,

cf (v, u) = c(v, u)− f(v, u) = 0− (−f(u, v)) = f(u, v),

since c(v, u) = 0 as (v → u) is not an edge of G. As such, (v → u) ∈ Ef . This states that
we can always reduce the flow on the edge (u→ v) and this is interpreted as pushing flow
on the edge (v → u). See Figure 12.2 for an example of a residual network.

Since every edge of G induces at most two edges in Gf , it follows that Gf has at most
twice the number of edges of G; formally, |Ef | ≤ 2 |E|.

Lemma 12.2.6. Given a flow f defined over a network G, then the residual network Gf

together with cf form a flow network.

Proof : One need to verify that cf (·) is always a non-negative function, which is true by the
definition of Ef .

The following lemma testifies that we can improve a flow f on G by finding a any legal
flow h in the residual netowrk Gf .

Lemma 12.2.7. Given a flow network G(V, E), a flow f in G, and h be a flow in Gf ,
where Gf is the residual network of f . Then f + h is a (legal) flow in G and its capacity is
|f + h| = |f |+ |h|.
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Proof : By definition, we have (f + h)(u, v) = f(u, v) + h(u, v) and thus (f + h)(X, Y ) =
f(X, Y ) + h(X, Y ). We need to verify that f + h is a legal flow, by verifying the properties
required to it by Definition 12.1.2.

Anti symmetry holds since (f + h)(u, v) = f(u, v) + h(u, v) = −f(v, u) − h(v, u) =
−(f + h)(v, u).

Next, we verify that the flow f + h is bounded by capacity. Indeed,
(f + h)(u, v) ≤ f(u, v) + h(u, v) ≤ f(u, v) + cf (u, v) = f(u, v) + (c(u, v)− f(u, v)) = c(u, v).

For u ∈ V − s − t we have (f + h)(u, V ) = f(u, V ) + h(u, V ) = 0 + 0 = 0 and as such
f + h comply with the conservation of flow requirement.

Finally, the total flow is
|f + h| = (f + h)(s, V ) = f(s, V ) + h(s, V ) = |f |+ |h| .
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Figure 12.3: An augment-
ing path for the flow of Fig-
ure 12.2.

Definition 12.2.8. For G and a flow f , a path π in Gf

between s and t is an augmenting path.
Note, that all the edges of π has positive capacity in

Gf , since otherwise (by definition) they would not appear
in Ef . As such, given a flow f and an augmenting path π,
we can improve f by pushing a positive amount of flow
along the augmenting path π. An augmenting path is
depicted on the right, for the network flow of Figure 12.2.
Definition 12.2.9. For an augmenting path π let cf (π)
be the maximum amount of flow we can push through π.
We call cf (π) the residual capacity of π. Formally,

cf (π) = min
(u→v)∈π

cf (u, v).
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Figure 12.4: The flow resulting from ap-
plying the residual flow fp of the path p
of Figure 12.3 to the flow of Figure 12.2.

We can now define a flow that realizes the
flow along π. Indeed:

fπ(u, v) =


cf (π) if (u→ v) is in π
−cf (π) if (v → u) is in π

0 otherwise.

Lemma 12.2.10. For an augmenting path π,
the flow fπ is a flow in Gf and |fπ| = cf (π) >
0.

We can now use such a path to get a larger
flow:

Lemma 12.2.11. Let f be a flow, and let π be an augmenting path for f . Then f + fπ is
a “better” flow. Namely, |f + fπ| = |f |+ |fπ| > |f |.

Namely, f + fπ is flow with larger value than f . Consider the flow in Figure 12.4.
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�Can we continue improving it? Well, if you inspect the
residual network of this flow, depicted on the right. Observe
that s is disconnected from t in this residual network. So,
we are unable to push any more flow. Namely, we found a
solution which is a local maximum solution for network flow.
But is that a global maximum? Is this the maximum flow we
are looking for?

12.3 The Ford-Fulkerson method
mtdFordFulkerson(G, c)

begin
f ← Zero flow on G
while (Gf has augmenting

path p) do
(* Recompute Gf for

this check *)
f ← f + fp

return f
end

Given a network G with capacity constraints c,
the above discussion suggest a simple and natural
method to compute a maximum flow. This is known
as the Ford-Fulkerson method for computing max-
imum flow, and is depicted on the left, we will refer
to it as the mtdFordFulkerson method.

It is unclear that this method (and the reason we
do not refer to it as an algorithm) terminates and
reaches the global maximum flow. We address these
problems shortly.

12.4 On maximum flows
We need several natural concepts.

Definition 12.4.1. A directed cut (S, T ) in a flow network G = (V, E) is a partition of V
into S and T = V − S, such that s ∈ S and t ∈ T . We usually will refer to a directed cut
as being a cut.

The net flow of f across a cut (S, T ) is f(S, T ) = ∑
s∈S,t∈T f(s, t).

The capacity of (S, T ) is c(S, T ) = ∑
s∈S,t∈T c(s, t).

The minimum cut is the cut in G with the minimum capacity.

Lemma 12.4.2. Let G,f ,s,t be as above, and let (S, T ) be a cut of G. Then f(S, T ) = |f |.

Proof : We have

f(S, T ) = f(S, V )− f(S, S) = f(S, V ) = f(s, V ) + f(S − s, V ) = f(s, V ) = |f | ,

since T = V \ S, and f(S − s, V ) = ∑
u∈S−s f(u, V ) = 0 by Lemma 12.2.2 (v) (note that u

can not be t as t ∈ T ).

Claim 12.4.3. The flow in a network is upper bounded by the capacity of any cut (S, T ) in
G.
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Proof : Consider a cut (S, T ). We have |f | = f(S, T ) = ∑
u∈S,v∈T f(u, v) ≤ ∑

u∈S,v∈T c(u, v) =
c(S, T ).

In particular, the maximum flow is bounded by the capacity of the minimum cut. Sur-
prisingly, the maximum flow is exactly the value of the minimum cut.

Theorem 12.4.4 (Max-flow min-cut theorem). If f is a flow in a flow network G =
(V, E) with source s and sink t, then the following conditions are equivalent:

(A) f is a maximum flow in G.
(B) The residual network Gf contains no augmenting paths.
(C) |f | = c(S, T ) for some cut (S, T ) of G. And (S, T ) is a minimum cut in G.

Proof : (A)⇒ (B): By contradiction. If there was an augmenting path p then cf (p) > 0, and
we can generate a new flow f + fp, such that |f + fp| = |f | + cf (p) > |f | . A contradiction
as f is a maximum flow.

(B) ⇒ (C): Well, it must be that s and t are disconnected in Gf . Let

S =
{
v

∣∣∣ Exists a path between s and v in Gf

}
and T = V \ S. We have that s ∈ S, t ∈ T , and for any u ∈ S and v ∈ T we have
f(u, v) = c(u, v). Indeed, if there were u ∈ S and v ∈ T such that f(u, v) < c(u, v) then
(u→ v) ∈ Ef , and v would be reachable from s in Gf , contradicting the construction of T .

This implies that |f | = f(S, T ) = c(S, T ). The cut (S, T ) must be a minimum cut,
because otherwise there would be cut (S ′, T ′) with smaller capacity c(S ′, T ′) < c(S, T ) =
f(S, T ) = |f |, On the other hand, by Lemma 12.4.3, we have |f | = f(S ′, T ′) ≤ c(S ′, T ′). A
contradiction.

(C) ⇒ (A) Well, for any cut (U, V ), we know that |f | ≤ c(U, V ). This implies that if
|f | = c(S, T ) then the flow can not be any larger, and it is thus a maximum flow.

The above max-flow min-cut theorem implies that if mtdFordFulkerson terminates,
then it had computed the maximum flow. What is still allusive is showing that the mtd-
FordFulkerson method always terminates. This turns out to be correct only if we are
careful about the way we pick the augmenting path.
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