
Chapter 11

Min Cut
By Sariel Har-Peled, December 17, 2012¬ Version: 1.0

I built on the sand
And it tumbled down,
I built on a rock
And it tumbled down.
Now when I build, I shall begin
With the smoke from the chimney.

– Leopold Staff, Foundations.

11.1 Min Cut

11.1.1 Problem Definition
Let G = (V, E) be undirected graph with n vertices and m edges.

We are interested in cuts in G.

Definition 11.1.1. A cut in G is a partition of the vertices of
V into two sets S and V \ S, where the edges of the cut are

(S, V \ S) =
{
uv

∣∣∣u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

where S , ∅ and V \S , ∅. We will refer to the number of edges
in the cut (S, V \ S) as the size of the cut. For an example of a
cut, see figure on the right.

We are interested in the problem of computing the minimum cut (i.e., mincut), that
is, the cut in the graph with minimum cardinality. Specifically, we would like to find the set
S ⊆ V such that (S, V \S) is as small as possible, and S is neither empty nor V \S is empty.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

11.1.2 Some Definitions
We remind the reader of the following concepts. The conditional probability of X given Y
is Pr

[
X = x |Y = y

]
= Pr

[
(X = x) ∩ (Y = y)

]
/Pr

[
Y = y

]
. An equivalent, useful restate-

ment of this is that

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

∣∣∣Y = y
]
·Pr[Y = y] . (11.1)

Two events X and Y are independent, if Pr
[
X = x ∩ Y = y

]
= Pr

[
X = x

]
· Pr

[
Y = y

]
.

In particular, if X and Y are independent, then Pr
[
X = x

∣∣∣Y = y
]

= Pr
[
X = x

]
.

The following is easy to prove by induction using Eq. (11.1).

Lemma 11.1.2. Let E1, . . . , En be n events which are not necessarily independent. Then,

Pr
[
∩n

i=1 Ei

]
= Pr

[
E1
]
∗Pr

[
E2 |E1

]
∗Pr

[
E3

∣∣∣ E1 ∩ E2
]
∗ . . . ∗Pr

[
En

∣∣∣ E1 ∩ . . . ∩ En−1
]

.

11.2 The Algorithm

(a) (b)

Figure 11.1: (a) A contraction of the edge
xy. (b) The resulting graph.

The basic operation used by the algorithm
is edge contraction, depicted in Figure 11.1.
We take an edge e = xy in G and merge the
two vertices into a single vertex. The new re-
sulting graph is denoted by G/xy. Note, that
we remove self loops created by the contraction.
However, since the resulting graph is no longer
a regular graph, it has parallel edges – namely,
it is a multi-graph. We represent a multi-graph,
as a regular graph with multiplicities on the edges. See Figure 11.2.

(a) (b)

Figure 11.2: (a) A multi-graph. (b) A min-
imum cut in the resulting multi-graph.

The edge contraction operation can be im-
plemented in O(n) time for a graph with n ver-
tices. This is done by merging the adjacency
lists of the two vertices being contracted, and
then using hashing to do the fix-ups (i.e., we
need to fix the adjacency list of the vertices
that are connected to the two vertices).

Note, that the cut is now computed count-
ing multiplicities (i.e., if e is in the cut and it
has weight w, then the contribution of e to the
cut weight is w).

Observation 11.2.1. A set of vertices in G/xy corresponds to a set of vertices in the graph
G. Thus a cut in G/xy always corresponds to a valid cut in G. However, there are cuts in G

2

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 11.3: (a) Original graph. (b)–(j) a sequence of contractions in the graph, and (h) the
cut in the original graph, corresponding to the single edge in (h). Note that the cut of (h)
is not a mincut in the original graph.

that do not exist in G/xy. For example, the cut S = {x}, does not exist in G/xy. As such,
the size of the minimum cut in G/xy is at least as large as the minimum cut in G (as long
as G/xy has at least one edge). Since any cut in G/xy has a corresponding cut of the same
cardinality in G.

Our algorithm works by repeatedly performing edge contractions. This is beneficial as
this shrinks the underlying graph, and we would compute the cut in the resulting (smaller)
graph. An “extreme” example of this, is shown in Figure 11.3, where we contract the graph
into a single edge, which (in turn) corresponds to a cut in the original graph. (It might
help the reader to think about each vertex in the contracted graph, as corresponding to a
connected component in the original graph.)

Figure 11.3 also demonstrates the problem with taking this approach. Indeed, the result-
ing cut is not the minimum cut in the graph.

So, why did the algorithm fail to find the minimum cut in this case?­ The failure occurs
because of the contraction at Figure 11.3 (e), as we had contracted an edge in the minimum
cut. In the new graph, depicted in Figure 11.3 (f), there is no longer a cut of size 3, and all
cuts are of size 4 or more. Specifically, the algorithm succeeds only if it does not contract
an edge in the minimum cut.

­Naturally, if the algorithm had succeeded in finding the minimum cut, this would have been our success.

3

11.2.1 The resulting algorithm
Observation 11.2.2. Let e1, . . . , en−2 be a sequence of edges in G, such that none of them
is in the minimum cut, and such that G′ = G/ {e1, . . . , en−2} is a single multi-edge. Then,
this multi-edge corresponds to a minimum cut in G.

Algorithm MinCut(G)
G0 ← G
i = 0
while Gi has more than two vertices do

ei ← random edge from E(Gi)
Gi+1 ← Gi/ei

i← i + 1
Let (S, V \ S) be the cut in the original graph

corresponding to the single edge in Gi

return (S, V \ S).

Figure 11.4: The minimum cut algorithm.

Note, that the claim in the above
observation is only in one direc-
tion. We might be able to still
compute a minimum cut, even if
we contract an edge in a minimum
cut, the reason being that a mini-
mum cut is not unique. In partic-
ular, another minimum cut might
survived the sequence of contrac-
tions that destroyed other minimum
cuts.

Using Observation 11.2.2 in an
algorithm is problematic, since the argumentation is circular, how can we find a sequence of
edges that are not in the cut without knowing what the cut is? The way to slice the Gordian
knot here, is to randomly select an edge at each stage, and contract this random edge.

See Figure 11.4 for the resulting algorithm MinCut.

11.2.1.1 On the art of randomly picking an edge

Every edge has a weight associated with it (which is the number of edges in the original
graph it represents). A vertex weight is the total weight associated with it. We maintain
during the contraction for every vertex the total weight of the edges adjacent to it. We need
the following easy technical lemma.

Lemma 11.2.3. Let X {x1, . . . , xn} be a set of n elements, and let ω(xi) be an integer
positive weight. One can pick randomly, in O(n) time, an element from the set X, with the
probability of picking xi being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof : Pick randomly a real number r in the range 0 to W . We also precompute the prefix
sums βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi), for i = 1, . . . , n, which can be done in linear time.
Now, find the first index i, such that βi−1 < r ≤ βi. Clearly, the probability of xi to be
picked is exactly ω(xi) /W .

Now, we pick a vertex randomly according to the vertices weight in O(n) time, and we
pick randomly an edge adjacent to a vertex in O(n) time (again, according to the weights of
the edges). Thus, we uniformly sample an edge of the graph, with probability proportional
to its weight, as desired.

4

11.2.2 Analysis
11.2.2.1 The probability of success

Naturally, if we are extremely lucky, the algorithm would never pick an edge in the mincut,
and the algorithm would succeed. The ultimate question here is what is the probability of
success. If it is relatively “large” then this algorithm is useful since we can run it several
times, and return the best result computed. If on the other hand, this probability is tiny,
then we are working in vain since this approach would not work.

Lemma 11.2.4. If a graph G has a minimum cut of size k and G has n vertices, then
|E(G)| ≥ kn/2.

Proof : Each vertex degree is at least k, otherwise the vertex itself would form a minimum
cut of size smaller than k. As such, there are at least ∑v∈V degree(v)/2 ≥ nk/2 edges in the
graph.

Lemma 11.2.5. If we pick in random an edge e from a graph G, then with probability at
most 2/n it belong to the minimum cut.

Proof : There are at least nk/2 edges in the graph and exactly k edges in the minimum cut.
Thus, the probability of picking an edge from the minimum cut is smaller then k/(nk/2) =
2/n.

The following lemma shows (surprisingly) that MinCut succeeds with reasonable prob-
ability.

Lemma 11.2.6. MinCut outputs the mincut with probability ≥ 2
n(n− 1)

.

Proof : Let Ei be the event that ei is not in the minimum cut of Gi. By Observation 11.2.2,
MinCut outputs the minimum cut if the events E0, . . . , En−3 all happen (namely, all edges
picked are outside the minimum cut).

By Lemma 11.2.5, it holds Pr
[
Ei

∣∣∣ E0 ∩ E1 ∩ . . . ∩ Ei−1
]
≥ 1 − 2

|V (Gi)|
= 1 − 2

n− i
.

Implying that

∆ = Pr[E0 ∩ . . . ∩ En−3]
= Pr[E0] ·Pr

[
E1

∣∣∣ E0
]
·Pr

[
E2

∣∣∣ E0 ∩ E1
]
· . . . ·Pr

[
En−3

∣∣∣ E0 ∩ . . . ∩ En−4
]

As such, we have

∆ ≥
n−3∏
i=0

(
1− 2

n− i

)
=

n−3∏
i=0

n− i− 2
n− i

= n− 2
n

∗ n− 3
n− 1

∗ n− 4
n− 2

. . . · 2
4
· 1

3

= 2
n · (n− 1)

.

5

11.2.2.2 Running time analysis.

Observation 11.2.7. MinCut runs in O(n2) time.

Observation 11.2.8. The algorithm always outputs a cut, and the cut is not smaller than
the minimum cut.

Definition 11.2.9. (informal) Amplification is the process of running an experiment again
and again till the things we want to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut n(n − 1) times and return the
minimum cut computed in all those independent executions of MinCut.

Lemma 11.2.10. The probability that MinCutRep fails to return the minimum cut is
< 0.14.

Proof : The probability of failure of MinCut to output the mincut in each execution is
at most 1 − 2

n(n−1) , by Lemma 11.2.6. Now, MinCutRep fails, only if all the n(n − 1)
executions of MinCut fail. But these executions are independent, as such, the probability
to this happen is at most(

1− 2
n(n− 1)

)n(n−1)

≤ exp
(
− 2

n(n− 1)
· n(n− 1)

)
= exp(−2) < 0.14,

since 1− x ≤ e−x for 0 ≤ x ≤ 1.

Theorem 11.2.11. One can compute the minimum cut in O(n4) time with constant prob-
ability to get a correct result. In O(n4 log n) time the minimum cut is returned with high
probability.

11.3 A faster algorithm
The algorithm presented in the previous section is extremely simple. Which raises the
question of whether we can get a faster algorithm®?

So, why MinCutRep needs so many executions? Well, the probability of success in the
first ν iterations is

Pr
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1− 2

n− i

)
=

ν−1∏
i=0

n− i− 2
n− i

=n− 2
n

∗ n− 3
n− 1

∗ n− 4
n− 2

. . . = (n− ν)(n− ν − 1)
n · (n− 1)

. (11.2)

®This would require a more involved algorithm, that is life.

6

Contract(G, t)
while |(G)| > t do

Pick a random edge e in G.
G← G/e

return G

FastCut(G = (V, E))
G – multi-graph

begin
n← |V (G)|
if n ≤ 6 then

Compute (via brute force) minimum cut
of G and return cut.

t←
⌈
1 + n/

√
2
⌉

H1 ← Contract(G, t)
H2 ← Contract(G, t)
/* Contract is randomized!!! */
X1 ← FastCut(H1),
X2 ← FastCut(H2)
return minimum cut out of X1 and X2.

end

Figure 11.5: Contract(G, t) shrinks G till it has only t vertices. FastCut computes the
minimum cut using Contract.

Namely, this probability deteriorates very quickly toward the end of the execution, when
the graph becomes small enough. (To see this, observe that for ν = n/2, the probability of
success is roughly 1/4, but for ν = n−

√
n the probability of success is roughly 1/n.)

So, the key observation is that as the graph get smaller the probability to make a bad
choice increases. So, instead of doing the amplification from the outside of the algorithm,
we will run the new algorithm more times when the graph is smaller. Namely, we put the
amplification directly into the algorithm.

The basic new operation we use is Contract, depicted in Figure 11.5, which also depict
the new algorithm FastCut.
Lemma 11.3.1. The running time of FastCut(G) is O(n2 log n), where n = |V (G)|.

Proof : Well, we perform two calls to Contract(G, t) which takes O(n2) time. And then we
perform two recursive calls on the resulting graphs. We have:

T (n) = O
(
n2
)

+ 2T

(
n√
2

)

The solution to this recurrence is O(n2 log n) as one can easily (and should) verify.

Exercise 11.3.2. Show that one can modify FastCut so that it uses only O(n2) space.

Lemma 11.3.3. The probability that Contract(G, n/
√

2) had not contracted the minimum
cut is at least 1/2.

Namely, the probability that the minimum cut in the contracted graph is still a minimum
cut in the original graph is at least 1/2.

7

Proof : Just plug in ν = n− t = n−
⌈
1 + n/

√
2
⌉

into Eq. (11.2). We have

Pr[E0 ∩ . . . ∩ En−t] ≥
t(t− 1)

n · (n− 1)
=

⌈
1 + n/

√
2
⌉(⌈

1 + n/
√

2
⌉
− 1

)
n(n− 1)

≥ 1
2

.

The following lemma bounds the probability of success. A more elegant argument is
given in Section 11.3.1 below.

Lemma 11.3.4. FastCut finds the minimum cut with probability larger than Ω (1/ log n).

Proof : Do not read this proof – a considerably more elegant argument is given in Sec-
tion 11.3.1.

Let P (n) be the probability that the algorithm succeeds on a graph with n vertices.
The probability to succeed in the first call on H1 is the probability that Contract did

not hit the minimum cut (this probability is larger than 1/2 by Lemma 11.3.3), times the
probability that the algorithm succeeded on H1 in the recursive call (those two events are
independent). Thus, the probability to succeed on the call on H1 is at least (1/2)∗P (n/

√
2),

Thus, the probability to fail on H1 is ≤ 1− 1
2P
(

n√
2

)
.

The probability to fail on both H1 and H2 is smaller than(
1− 1

2
P

(
n√
2

))2

,

since H1 and H2 are being computed independently. Note that if the algorithm, say, fails
on H1 but succeeds on H2 then it succeeds to return the mincut. Thus the above expression
bounds the probability of failure. And thus, the probability for the algorithm to succeed is

P (n) ≥ 1−
(

1− 1
2

P

(
n√
2

))2

= P

(
n√
2

)
− 1

4

(
P

(
n√
2

))2

.

We need to solve this recurrence. (This is very tedious, but since the details are non-
trivial we provide the details of how to do so.) Divide both sides of the equation by P

(
n/
√

2
)

we have:

P (n)
P (n/

√
2)
≥ 1− 1

4
P (n/

√
2).

It is now easy to verify that this inequality holds for P (n) ≥ c/ log n (since the worst
case is P (n) = c/ log n we verify this inequality for this value). Indeed,

c/ log n

c/ log(n/
√

2)
≥ 1− c

4 log(n/
√

2)
.

8

As such, letting ∆ = log n, we have

log n− log
√

2
log n

= ∆− log
√

2
∆

≥ 4(log n− log
√

2)− c

4(log n− log
√

2)
= 4(∆− log

√
2)− c

4(∆− log
√

2)
.

Equivalently, 4(∆ − log
√

2)2 ≥ 4∆(∆ − log
√

2) − c∆. Which implies −8∆ log
√

2 +
4 log2 √2 ≥ −4∆ log

√
2− c∆. Namely,

c∆− 4∆ log
√

2 + 4 log2 √2 ≥ 0,

which clearly holds for c ≥ 4 log
√

2.
We conclude, that the algorithm succeeds in finding the minimum cut in probability

≥ 2 log 2/ log n.

(Note that the base of the induction holds because we use brute force, and then P (i) = 1
for small i.)

Exercise 11.3.5. Prove, that running FastCut repeatedly c · log2 n times, guarantee that
the algorithm outputs the minimum cut with probability ≥ 1 − 1/n2, say, for c a constant
large enough.

Theorem 11.3.6. One can compute the minimum cut in a graph G with n vertices in
O(n2 log3 n) time. The algorithm succeeds with probability ≥ 1− 1/n2.

Proof : We do amplification on FastCut by running it O(log2 n) times. The running time
bound follows from Lemma 11.3.1. The bound on the probability follows from Lemma 11.3.4,
and using the amplification analysis as done in Lemma 11.2.10 for MinCutRep.

11.3.1 On coloring trees and min-cut
Let Th be a complete binary tree of height h. We randomly color its edges by black and
white. Namely, for each edge we independently choose its color to be either black or white,
with equal probability. We are interested in the event that there exists a path from the root
of Th to one of its leafs, that is all black. Let Eh denote this event, and let ρh = Pr[Eh].
Observe that ρ0 = 1 and ρ1 = 3/4 (see below).

To bound this probability, consider the root u of Th and its two children ul and ur. The
probability that there is a black path from ul to one of its children is ρh−1, and as such,
the probability that there is a black path from u through ul to a leaf of the subtree of ul is
Pr
[
the edge uul is colored black

]
· ρh−1 = ρh−1/2. As such, the probability that there is no

black path through ul is 1−ρh−1/2. As such, the probability of not having a black path from
u to a leaf (through either children) is (1−ρh−1/2)2. In particular, there desired probability,
is the complement; that is

ρh = 1−
(

1− ρh−1

2

)2
= ρh−1

2

(
2− ρh−1

2

)
= ρh−1 −

ρ2
h−1
4

.

9

Lemma 11.3.7. We have that ρh ≥ 1/(h + 1).

Proof : The proof is by induction. For h = 1, we have ρ1 = 3/4 ≥ 1/(1 + 1).
Observe that ρh = f(ρh−1) for f(x) = x− x2/4, and f ′(x) = 1− x/2. As such, f ′(x) > 0

for x ∈ [0, 1] and f(x) is increasing in the range [0, 1]. As such, by induction, we have that

ρh = f (ρh−1) ≥ f

(
1

(h− 1) + 1

)
= 1

h
− 1

4h2 . We need to prove that ρh ≥ 1/(h + 1), which

is implied by the above if

1
h
− 1

4h2 ≥
1

h + 1
⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔ 4h2 + 4h− h− 1 ≥ 4h2 ⇔ 3h ≥ 1,

which trivially holds.

The recursion tree for FastCut corresponds to such a coloring. Indeed, it is a binary tree
as every call performs two recursive calls. Inside such a call, we independently perform two
(independent) contractions reducing the given graph with n vertices to have n/

√
2 vertices.

If this contraction succeeded (i.e., it did not hit the min-cut), then consider this edge to
be colored by black (and white otherwise). Clearly, the algorithm succeeds, if and only if,
there is black colored path from the root of the tree to the leaf. Since the tree has depth
H ≤ 2 + log √

2 n, and by Lemma 11.3.7, we have that the probability of FastCut to succeed
is at least 1/(h + 1) ≥ 1/(3 + log √

2 n).

Galton-Watson processes. Imagine that you start with a single node. The node is going
to have two children, and each child survives with probability half (independently). If a child
survives it is going to have two children, and so on. Clearly, a single node give a rise to a
random tree. The natural question is what is the probability that the original node has
descendants h generations in the future. In the above we proved that this probability is at
least 1/(h + 1). See below for more details on this interpretation.

11.4 Bibliographical Notes
The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford.
The fast algorithm is a joint work with Clifford Stein. The basic algorithm of the mincut is
described in [MR95, pages 7–9], the faster algorithm is described in [MR95, pages 289–295].

Galton-Watson process. The idea of using coloring of the edges of a tree to analyze
FastCut might be new (i.e., Section 11.3.1). It is inspired by Galton-Watson processes
(which is a special case of a branching process). The problem that initiated the study of these
processes goes back to the 19th century [WG75]. Victorians were worried that aristocratic
surnames were disappearing, as family names passed on only through the male children.
As such, a family with no male children had its family name disappear. So, imagine the
number of male children of a person is an independent random variable X ∈ {0, 1, 2, . . .}.

10

Starting with a single person, its family (as far as male children are concerned) is a random
tree with the degree of a node being distributed according to X. We continue recursively in
constructing this tree, again, sampling the number of children for each current leaf according
to the distribution of X. It is not hard to see that a family disappears if E[X] ≤ 1, and it
has a constant probability of surviving if E[X] > 1. In our case, X was the number of the
two children of a node that their edges were colored black.

Of course, since infant mortality is dramatically down (as is the number of aristocrat
males dying to maintain the British empire), the probability of family names to disappear
is now much lower than it was in the 19th century. Interestingly, countries with family
names that were introduced long time ago have very few surnames (i.e., Koreans have 250
surnames, and three surnames form 45% of the population). On the other hand, countries
that introduced surnames more recently have dramatically more surnames (for example,
the Dutch have surnames only for the last 200 years, and there are 68, 000 different family
names).

Bibliography
[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.

[WG75] H. W. Watson and F. Galton. On the probability of the extinction of families. J.
Anthrop. Inst. Great Britain, 4:138–144, 1875.

11

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	11 Min Cut
	11.1 Min Cut
	11.1.1 Problem Definition
	11.1.2 Some Definitions

	11.2 The Algorithm
	11.2.1 The resulting algorithm
	11.2.2 Analysis

	11.3 A faster algorithm
	11.3.1 On coloring trees and min-cut

	11.4 Bibliographical Notes

	Bibliography

