
Chapter 7

Approximation algorithms II
By Sariel Har-Peled, December 17, 2012¬ Version: 0.5

7.1 Max Exact 3SAT
We remind the reader that an instance of 3SAT is a boolean formula, for example F =
(x1 + x2 + x3)(x4 + x1 + x2), and the decision problem is to decide if the formula has a
satisfiable assignment. Interestingly, we can turn this into an optimization problem.

Max 3SAT
Instance: A collection of clauses: C1, . . . , Cm.
Question: Find the assignment to x1, ..., xn that satisfies the maximum number of
clauses.

Clearly, since 3SAT is NP-Complete it implies that Max 3SAT is NP-Hard. In par-
ticular, the formula F becomes the following set of two clauses:

x1 + x2 + x3 and x4 + x1 + x2.

Note, that Max 3SAT is a maximization problem.

Definition 7.1.1. Algorithm Alg for a maximization problem achieves an approximation
factor α if for all inputs, we have:

Alg(G)
Opt(G)

≥ α.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

In the following, we present a randomized algorithm – it is allowed to consult with
a source of random numbers in making decisions. A key property we need about random
variables, is the linearity of expectation property, which is easy to derive directly from the
definition of expectation.

Definition 7.1.2 (Linearity of expectations.). Given two random variables X, Y (not
necessarily independent, we have that E

[
X + Y

]
= E

[
X
]

+ E
[
Y
]
.

Theorem 7.1.3. One can achieve (in expectation) (7/8)-approximation to Max 3SAT in
polynomial time. Namely, if the instance has m clauses, then the generated assignment
satisfies (7/8)m clauses in expectation.

Proof : Let x1, . . . , xn be the n variables used in the given instance. The algorithm works by
randomly assigning values to x1, . . . , xn, independently, and equal probability, to 0 or 1, for
each one of the variables.

Let Yi be the indicator variables which is 1 if (and only if) the ith clause is satisfied by
the generated random assignment and 0 otherwise, for i = 1, . . . , m. Formally, we have

Yi =

1 Ci is satisfied by the generated assignment,
0 otherwise.

Now, the number of clauses satisfied by the given assignment is Y = ∑m
i=1 Yi. We claim

that E[Y] = (7/8)m, where m is the number of clauses in the input. Indeed, we have

E
[
Y
]

= E
[

m∑
i=1

Yi

]
=

m∑
i=1

E
[
Yi

]
by linearity of expectation. Now, what is the probability that Yi = 0? This is the probability
that all three literals appear in the clause Ci are evaluated to FALSE. Since the three literals
are instance of three distinct variable, these three events are independent, and as such the
probability for this happening is

Pr
[
Yi = 0

]
= 1

2
∗ 1

2
∗ 1

2
= 1

8
.

(Another way to see this, is to observe that since Ci has exactly three literals, there is
only one possible assignment to the three variables appearing in it, such that the clause
evaluates to FALSE. Now, there are eight (8) possible assignments to this clause, and thus
the probability of picking a FALSE assignment is 1/8.) Thus,

Pr
[
Yi = 1

]
= 1−Pr

[
Yi = 0

]
= 7

8
,

and

E
[
Yi

]
= Pr

[
Yi = 0

]
∗ 0 + Pr

[
Yi = 1

]
∗ 1 = 7

8
.

Namely, E[# of clauses sat] = E[Y] = ∑m
i=1 E[Yi] = (7/8)m. Since the optimal solution

satisfies at most m clauses, the claim follows.

2

Curiously, Theorem 7.1.3 is stronger than what one usually would be able to get for an
approximation algorithm. Here, the approximation quality is independent of how well the
optimal solution does (the optimal can satisfy at most m clauses, as such we get a (7/8)-
approximation. Curiouser and curiouser, the algorithm does not even look on the input
when generating the random assignment.

Håstad [Hås01] proved that one can do no better; that is, for any constant ε > 0, one can
not approximate 3SAT in polynomial time (unless P = NP) to within a factor of 7/8 + ε. It
is pretty amazing that a trivial algorithm like the above is essentially optimal.

7.2 Approximation Algorithms for Set Cover

7.2.1 Guarding an Art Gallery

You are given the floor plan of an art gallery, which is
a two dimensional simple polygon. You would like to place
guards that see the whole polygon. A guard is a point, which
can see all points around it, but it can not see through walls.
Formally, a point p can see a point q, if the segment pq is
contained inside the polygon. See figure on the right, for an
illustration of how the input looks like.

p

A visibility polygon at p (depicted as the yellow polygon
on the left) is the region inside the polygon that p can see.
WE would like to find the minimal number of guards needed
to guard the given art-gallery? That is, all the points in the
art gallery should be visible from at least one guard we place.

The art-gallery problem is a set-cover problem. We have
a ground set (the polygon), and family of sets (the set of all

visibility polygons), and the target is to find a minimal number of sets covering the whole
polygon.

It is known that finding the minimum number of guards needed is NP-Hard. No ap-
proximation is currently known. It is also known that a polygon with n corners, can be
guarded using n/3 + 1 guards. Note, that this problem is harder than the classical set-cover
problem because the number of subsets is infinite and the underlining base set is also infinite.

An interesting open problem is to find a polynomial time approximation algorithm, such
that given P , it computes a set of guards, such that #guards ≤

√
nkopt, where n is the

number of vertices of the input polygon P , and kopt is the number of guards used by the
optimal solution.

“Curiouser and curiouser!” Cried Alice (she was so much surprised, that for the moment she quite
forgot how to speak good English). – Alice in wonderland, Lewis Carol

3

7.2.2 Set Cover
The optimization version of Set Cover, is the following:

Set Cover
Instance: (S,F):

S - a set of n elements
F - a family of subsets of S, s.t. ∪X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X covers
S. Formally, ∪X∈X X = S.

The set S is sometime called the ground set, and a pair (S,F) is either called a set
system or a hypergraph. Note, that Set Cover is a minimization problem which is also
NP-Hard.

Example 7.2.1. Consider the set S = {1, 2, 3, 4, 5} and the following family of subsets

F =
{
{1, 2, 3}, {2, 5}, {1, 4}, {4, 5}

}
.

Clearly, the smallest cover of S is Xopt =
{
{1, 2, 3}, {4, 5}

}
.

GreedySetCover(S,F)
X← ∅; T ← S
while T is not empty do

U ← set in F covering largest
of elements in T

X← X ∪ {U}
T ← T \ U

return X.

The greedy algorithm GreedySetCover for
this problem is depicted on the right. Here, the
algorithm always picks the set in the family that
covers the largest number of elements not covered
yet. Clearly, the algorithm is polynomial in the
input size. Indeed, we are given a set S of n
elements, and m subsets. As such, the input size
is at least Ω(m + n) (and at most of size O(mn)),
and the algorithm takes time polynomial in m
and n. Let Xopt = {V1, . . . , Vk} be the optimal
solution.

Let Ti denote the elements not covered in the beginning ith iteration of GreedySet-
Cover, where T1 = S. Let Ui be the set added to the cover in the ith iteration, and
αi = |Ui ∩ Ti| be the number of new elements being covered in the ith iteration.

Claim 7.2.2. We have α1 ≥ α2 ≥ . . . ≥ αk ≥ . . . ≥ αm.

Proof : If αi < αi+1 then Ui+1 covers more elements than Ui and we can exchange between
them, as we found a set that in the ith iteration covers more elements that the set used
by GreedySetCover. Namely, in the ith iteration we would use Ui+1 instead of Ui. This
contradicts the greediness of GreedySetCover of choosing the set covering the largest
number of elements not covered yet. A contradiction.

4

Claim 7.2.3. We have αi ≥ |Ti| /k. Namely, |Ti+1| ≤ (1− 1/k) |Ti|.

Proof : Consider the optimal solution. It is made out of k sets and it covers S, and as such
it covers Ti ⊆ S. This implies that one of the subsets in the optimal solution cover at least
1/k fraction of the elements of Ti. Finally, the greedy algorithm picks the set that covers
the largest number of elements of Ti. Thus, Ui covers at least αi ≥ |Ti|/k elements.

As for the second claim, we have that |Ti+1| = |Ti| − αi ≤ (1− 1/k) |Ti|.

Theorem 7.2.4. The algorithm GreedySetCover generates a cover of S using at most
O(k log n) sets of F, where k is the size of the cover in the optimal solution.

Proof : We have that |Ti| ≤ (1 − 1/k) |Ti−1| ≤ (1 − 1/k)i |T0| = (1 − 1/k)in. In particular,
for M = ⌈2k ln n⌉ we have

|TM | ≤
(

1− 1
k

)M

n ≤ exp
(
−1

k
M
)

n = exp
(
−⌈2k ln n⌉

k

)
n ≤ 1

n
< 1,

since 1 − x ≤ e−x, for x ≥ 0. Namely, |TM | = 0. As such, the algorithm terminates before
reaching the Mth iteration, and as such it outputs a cover of size O(k log n), as claimed.

7.2.3 Lower bound
The lower bound example is depicted in the following figure.

Y4

Z4

X1 X2 X3 X4

We provide a more formal description of this lower bound next, and prove that it shows
Ω(log n) approximation to GreedySetCover.

We want to show here that the greedy algorithm analysis is tight. To this end, consider
the set system Λi =(Si,Fi), where Si = Yi∪Zi, Yi = {y1, . . . , y2i−1} and Zi = {z1, . . . , z2i−1}.
The family of sets Fi contains the following sets

Xj = {y2j−1 , . . . , y2j−1, z2j−1 , . . . , z2j−1} ,

for j = 1, . . . , i. Furthermore, Fi also contains the two special sets Yi and Zi. Clearly,
minimum set cover for Λi is the two sets Yi and Zi.

However, sets Yi and Zi have size 2i − 1. But, the set Xi has size

|Xi| = 2
(
2i − 1− 2i−1 + 1

)
= 2i,

and this is the largest set in Λi. As such, the greedy algorithm GreedySetCover would
pick Xi as first set to its cover. However, once you remove Xi from Λi (and from its ground
set), you remain with the set system Λi−1. We conclude that GreedySetCover would pick
the sets Xi, Xi−1, . . . , X1 to the cover, while the optimal cover is by two sets. We conclude:

5

Lemma 7.2.5. Let n = 2i+1 − 2. There exists an instance of Set Cover of n elements, for
which the optimal cover is by two sets, but GreedySetCover would use i = ⌊lg n⌋ sets for
the cover. That is, GreedySetCover is a Θ(log n) approximation to SetCover.

7.2.4 Just for fun – weighted set cover

Weighted Set Cover
Instance: (S,F, ρ):

S: a set of n elements
F: a family of subsets of S, s.t. ∪X∈F X = S.
ρ(·): A price function assigning price to each set in F.

Question: The set X ⊆ F, such that X covers S. Formally, ∪X∈X X = S, and
ρ(X) = ∑

X∈X ρ(X) is minimized.

The greedy algorithm in this case, WGreedySetCover, repeatedly picks the set that
pays the least cover each element it cover. Specifically, if a set X ∈ F covered t new elements,
then the average price it pays per element it cover is α(X) = ρ(X) /t. WGreedySet-
Cover as such, picks the set with the lowest average price. Our purpose here to prove that
this greedy algorithm provides O(log n) approximation.

7.2.4.1 Analysis

Let Ui be the set of elements that are not covered yet in the end of the ith iteration. As such,
U0 = S. At the beginning of the ith iteration, the average optimal cost is αi = ρ(Opt) /ni,
where Opt is the optimal solution and ni = |Ui−1| is the number of uncovered elements.

Lemma 7.2.6. We have that:
(A) α1 ≤ α2 ≤ · · · .
(B) For i < j, we have 2αi ≤ αj only if nj ≤ ni/2.

Proof : (A) is hopefully obvious – as the number of elements not covered decreases, the
average price to cover the remaining elements using the optimal solution goes up.

(B) 2αi ≤ αj implies that 2ρ(Opt) /ni ≤ ρ(Opt) /nj, which implies in turn that 2nj ≤
ni.

So, let k be the first iteration such that nk ≤ n/2. The basic idea is that total price that
WGreedySetCover paid during these iterations is at most 2ρ(Opt). This immediately
implies O(log n) iteration, since this can happen at most O(log n) times till the ground set
is fully covered.

To this end, we need the following technical lemma.

Lemma 7.2.7. Let Ui−1 be the set of elements not yet covered in the beginning of the ith
iteration, and let αi = ρ(Opt) /ni be the average optimal cost per element. Then, there exists
a set X in the optimal solution, with lower average cost; that is, ρ(X) / |Ui−1 ∩X| ≤ αi.

6

Proof : Let X1, . . . , Xm be the sets used in the optimal solution. Let sj = |Ui−1 ∩Xj|, for
j = 1, . . . , m, be the number of new elements covered by each one of these sets. Similarly,
let ρj = ρ(Xj), for j = 1, . . . , m. The average cost of the jth set is ρj/sj (it is +∞ if sj = 0).
It is easy to verify that

m
min
j=1

ρj

sj

≤
∑m

j=1 ρj∑m
j=1 sj

= ρ(Opt)∑m
j=1 sj

≤ ρ(Opt)
|Ui−1|

= αi.

The first inequality follows from the fact that if a/b ≤ c/d (all positive numbers), then
a

b
≤ a + c

b + d
≤ c

d
. In particular, for any such numbers min

(
a

b
,

c

d

)
≤ a + c

b + d
, and applying this

repeatedly implies this inequality. The second inequality follows as ∑m
j=1 sj ≥ |Ui−1|. This

implies that the optimal solution must contain a set with an average cost smaller than the
average optimal cost.

Lemma 7.2.8. Let k be the first iteration such that nk ≤ n/2. The total price of the sets
picked in iteration 1 to k − 1, is at most 2ρ(Opt).

Proof : By Lemma 7.2.7, at each iteration the algorithm picks a set with average cost that
is smaller than the optimal average cost (which goes up in each iteration). However, the
optimal average cost iterations, 1 to k−1, is at most twice the starting cost, since the number
of elements not covered is at least half the total number of elements. It follows, that the for
each element covered, the greedy algorithm paid at most twice the initial optimal average
cost. So, if the number of elements covered by the beginning of the kth iteration is β ≥ n/2,
then the total price paid is 2α1β = 2(ρ(Opt) /n)β ≤ 2ρ(Opt), implying the claim.

Theorem 7.2.9. WGreedySetCover computes a O(log n) approximation to the optimal
weighted set cover solution.

Proof : WGreedySetCover paid at most twice the optimal solution to cover half the el-
ements, by Lemma 7.2.8. Now, you can repeat the argument on the remaining uncovered
elements. Clearly, after O(log n) such halving steps, all the sets would be covered. In each
halving step, WGreedySetCover paid at most twice the optimal cost.

7.3 Biographical Notes
The Max 3SAT remains hard in the “easier” variant of MAX 2SAT version, where every clause
has 2 variables. It is known to be NP-Hard and approximable within 1.0741 [FG95], and
is not approximable within 1.0476 [Hås01]. Notice, that the fact that MAX 2SAT is hard to
approximate is surprising as 2SAT can be solved in polynomial time (!).

7

Bibliography
[FG95] U. Feige and M. Goemans. Approximating the value of two power proof systems,

with applications to max 2sat and max dicut. In ISTCS ’95: Proceedings of the
3rd Israel Symposium on the Theory of Computing Systems (ISTCS’95), page 182,
Washington, DC, USA, 1995. IEEE Computer Society.

[Hås01] J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach.,
48(4):798–859, July 2001.

8

http://www.acm.org/jacm/

	7 Approximation algorithms II
	7.1 Max Exact 3SAT
	7.2 Approximation Algorithms for Set Cover
	7.2.1 Guarding an Art Gallery
	7.2.2 Set Cover
	7.2.3 Lower bound
	7.2.4 Just for fun – weighted set cover

	7.3 Biographical Notes

	Bibliography

