
Chapter 3

NP Completeness III
By Sariel Har-Peled, December 17, 2012¬ Version: 1.0

3.1 Hamiltonian Cycle
Definition 3.1.1. A Hamiltonian cycle is a cycle in the graph that visits every vertex
exactly once.

Definition 3.1.2. An Eulerian cycle is a cycle in a graph that uses every edge exactly
once.

Finding Eulerian cycle can be done in linear time. Surprisingly, finding a Hamiltonian
cycle is much harder.

Hamiltonian Cycle
Instance: A graph G.
Question: Is there a Hamiltonian cycle in G?

Theorem 3.1.3. Hamiltonian Cycle is NP-Complete.

Proof : Hamiltonian Cycle is clearly in NP.
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


a

b

c

d

e

We will show a reduction from Vertex
Cover. Given a graph G and integer k we
redraw G in the following way: We turn ev-
ery vertex into a horizontal line segment, all
of the same length. Next, we turn an edge
in the original graph G into a gate, which is
a vertical segment connecting the two relevant vertices.

Note, that there is a Vertex Cover in G of size k if and only if there are k horizontal lines
that stabs all the gates in the resulting graph H (a line stabs a gate if one of the endpoints
of the gate lies on the line).

a

b

c

d

e

Thus, computing a vertex cover in G is equivalent to com-
puting k disjoints paths through the graph G that visits all the
gates. However, there is a technical problem: a path might
change venues or even go back. See figure on the right.

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

v

u To overcome this problem, we will replace each gate with a
component that guarantees, that if you visit all its vertices,
you have to go forward and can NOT go back (or change
“lanes”). The new component is depicted on the left.

There only three possible ways to visit all the vertices of
the components by paths that do not start/end inside the component, and they are the
following:

The proof that this is the only three possibilities is by brute
force. Depicted on the right is one impossible path, that tries
to backtrack by entering on the top and leaving on the bottom.
Observe, that there are vertices left unvisited. Which means
that not all the vertices in the graph are going to be visited, because we add the constraint,
that the paths start/end outside the gate-component (this condition would be enforced
naturally by our final construction).

The resulting graph H1 for the example graph we started
with is depicted on the right. There exists a Vertex Cover in
the original graph iff there exists k paths that start on the
left side and end on the right side, in this weird graph. And
these k paths visits all the vertices.

2



a

b

c

d

e

a

b

c

e

d

The final stroke is to add connection from the left side to the right
side, such that once you arrive to the right side, you can go back to the
left side. However, we want connection that allow you to travel exactly
k times. This is done by adding to the above graph a “routing box”
component H2 depicted on the right, with k new middle vertices. The
ith vertex on the left of the routing component is the left most vertex of
the ith horizontal line in the graph, and the ith vertex on the right of the
component is the right most vertex of the ith horizontal line in the graph.

It is now easy (but tedious) to verify that the resulting graph H1 ∪ H2 has a Hamiltonian
path iff H1has k paths going from left to right, which happens, iff the original graph has
a Vertex Cover of size k. It is easy to verify that this reduction can be done in polynomial
time.

3.2 Traveling Salesman Problem
A traveling salesman tour, is a Hamiltonian cycle in a graph, which its price is the price of
all the edges it uses.

TSP
Instance: G = (V, E) a complete graph - n vertices, c(e): Integer cost function
over the edges of G, and k an integer.
Question: Is there a traveling-salesman tour with cost at most k?

Theorem 3.2.1. TSP is NP-Complete.

Proof : Reduction from Hamiltonian cycle. Consider a graph G = (V, E), and let H be the
complete graph defined over V . Let

c(e) =

1 e ∈ E(G)
2 e < E(G).

Clearly, the cheapest TSP in H with cost function equal to n iff G is Hamiltonian. Indeed,
if G is not Hamiltonian, then the TSP must use one edge that does not belong to G, and
then, its price would be at least n + 1.

3.3 Subset Sum
We would like to prove that the following problem, Subset Sum is NPC.

Subset Sum
Instance: S - set of positive integers,t: - an integer number (Target)
Question: Is there a subset X ⊆ S such that ∑

x∈X x = t?

3



How does one prove that a problem is NP-Complete? First, one has to choose an
appropriate NPC to reduce from. In this case, we will use 3SAT. Namely, we are given a
3CNF formula with n variables and m clauses. The second stage, is to “play” with the
problem and understand what kind of constraints can be encoded in an instance of a given
problem and understand the general structure of the problem.

The first observation is that we can use very long numbers as input to Subset Sum. The
numbers can be of polynomial length in the size of the input 3SAT formula F .

The second observation is that in fact, instead of thinking about Subset Sum as adding
numbers, we can think about it as a problem where we are given vectors with k components
each, and the sum of the vectors (coordinate by coordinate, must match. For example, the
input might be the vectors (1, 2), (3, 4), (5, 6) and the target vector might be (6, 8). Clearly,
(1, 2) + (5, 6) give the required target vector. Lets refer to this new problem as Vec Subset
Sum.

Vec Subset Sum
Instance: S - set of n vectors of dimension k, each vector has non-negative numbers
for its coordinates, and a target vector −→

t .
Question: Is there a subset X ⊆ S such that ∑

−→x ∈X
−→x = −→

t ?

Given an instance of Vec Subset Sum, we can covert it into an instance of Subset Sum as
follows: We compute the largest number in the given instance, multiply it by n2 ·k ·100, and
compute how many digits are required to write this number down. Let U be this number
of digits. Now, we take every vector in the given instance and we write it down using U
digits, padding it with zeroes as necessary. Clearly, each vector is now converted into a
huge integer number. The property is now that a sub of numbers in a specific column of
the given instance can not spill into digits allocated for a different column since there are
enough zeroes separating the digits corresponding to two different columns.

Target ?? ?? 01 ???
a1 ?? ?? 01 ??
a2 ?? ?? 01 ??

Next, let us observe that we can force the solution (if
it exists) for Vec Subset Sum to include exactly one vector
out of two vectors. To this end, we will introduce a new
coordinate (i.e., a new column in the table on the right) for
all the vectors. The two vectors a1 and a2 will have 1 in this coordinate, and all other vectors
will have zero in this coordinate. Finally, we set this coordinate in the target vector to be
1. Clearly, a solution is a subset of vectors that in this coordinate add up to 1. Namely, we
have to choose either a1 or a2 into our solution.

In particular, for each variable x appearing in F , we will introduce two rows, denoted by
x and x and introduce the above mechanism to force choosing either x or x to the optimal
solution. If x (resp. x) is chosen into the solution, we will interpret it as the solution to F
assigns TRUE (resp. FALSE) to x.

4



numbers ... C ≡ a ∨ b ∨ c ...
a ... 01 ...
a ... 00 ...
b ... 01 ...
b ... 00 ...
c ... 00 ...
c ... 01 ...

C fix-up 1 000 07 000
C fix-up 2 000 08 000
C fix-up 3 000 09 000
TARGET 10

Next, consider a clause C ≡ a∨b∨c.appearing
in F . This clause requires that we choose at least
one row from the rows corresponding to a, b to
c. This can be enforced by introducing a new
coordinate for the clauses C, and setting 1 for
each row that if it is picked then the clauses is
satisfied. The question now is what do we set
the target to be? Since a valid solution might
have any number between 1 to 3 as a sum of this
coordinate. To overcome this, we introduce three
new dummy rows, that store in this coordinate,
the numbers 7, 8 and 9, and we set this coordinate
in the target to be 10. Clearly, if we pick to dummy rows into the optimal solution then sum
in this coordinate would exceed 10. Similarly, if we do not pick one of these three dummy
rows to the optimal solution, the maximum sum in this coordinate would be 1 + 1 + 1 = 3,
which is smaller than 10. Thus, the only possibility is to pick one dummy row, and some
subset of the rows such that the sum is 10. Notice, this “gadget” can accommodate any
(non-empty) subset of the three rows chosen for a, b and c.

We repeat this process for each clause of F . We end up with a set U of 2n + 3m vectors
with n + m coordinate, and the question if there is a subset of these vectors that add up to
the target vector. There is such a subset if and only if the original formula F is satisfiable,
as can be easily verified. Furthermore, this reduction can be done in polynomial time.

Finally, we convert these vectors into an instance of Subset Sum. Clearly, this instance
of Subset Sum has a solution if and only if the original instance of 3SAT had a solution.
Since Subset Sum is in NP as an be easily verified, we conclude that that Subset Sum is
NP-Complete.

Theorem 3.3.1. Subset Sum is NP-Complete.

For a concrete example of the reduction, see Figure 3.1.

3.4 3 dimensional Matching (3DM)

3DM
Instance: X, Y, Z sets of n elements, and T a set of triples, such that (a, b, c) ∈
T ⊆ X × Y × Z.
Question: Is there a subset S ⊆ T of n disjoint triples, s.t. every element of
X ∪ Y ∪ Z is covered exactly once.?

Theorem 3.4.1. 3DM is NP-Complete.

The proof is long and tedious and is omitted.
BTW, 2DM is polynomial (later in the course?).

5



numbers a ∨ a b ∨ b c ∨ c d ∨ d D ≡ b ∨ c ∨ d C ≡ a ∨ b ∨ c

a 1 0 0 0 00 01
a 1 0 0 0 00 00
b 0 1 0 0 00 01
b 0 1 0 0 01 00
c 0 0 1 0 01 00
c 0 0 1 0 00 01
d 0 0 0 1 00 00
d 0 0 0 1 01 01

C fix-up 1 0 0 0 0 00 07
C fix-up 2 0 0 0 0 00 08
C fix-up 3 0 0 0 0 00 09
D fix-up 1 0 0 0 0 07 00
D fix-up 2 0 0 0 0 08 00
D fix-up 3 0 0 0 0 09 00
TARGET 1 1 1 1 10 10

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
000000010000
000000010101
000000000007
000000000008
000000000009
000000000700
000000000800
000000000900
010101011010

Figure 3.1: The Vec Subset Sum instance generated for the 3SAT formula F =
(
b ∨ c ∨ d

)
∧

(a ∨ b ∨ c) is shown on the left. On the right side is the resulting instance of Subset Sum.

6



3.5 Partition
Partition
Instance: A set S of n numbers.
Question: Is there a subset T ⊆ S s.t. ∑

t∈T t = ∑
s∈S\T s.?

Theorem 3.5.1. Partition is NP-Complete.

Proof : Partition is in NP, as we can easily verify that such a partition is valid.
Reduction from Subset Sum. Let the given instance be n numbers a1, . . . , an and a target

number t. Let S = ∑n
i= ai, and set an+1 = 3S − t and an+2 = 3S − (S − t) = 2S + t. It is easy

to verify that there is a solution to the given instance of subset sum, iff there is a solution
to the following instance of partition:

a1, . . . , an, an+1, an+2.

Clearly, Partition is in NP and thus it is NP-Complete.

3.6 Some other problems
It is not hard to show that the following problems are NP-Complete:

SET COVER
Instance: (S,F, k):

S: A set of n elements
F: A family of subsets of S, s.t. ∪

X∈F X = S.
k: A positive integer.

Question: Are there k sets S1, . . . , Sk ∈ F that cover S. Formally, ∪
i Si = S?

7


	3 NP Completeness III
	3.1 Hamiltonian Cycle
	3.2 Traveling Salesman Problem
	3.3 Subset Sum
	3.4 3 dimensional Matching (3DM)
	3.5 Partition
	3.6 Some other problems


