
Chapter 1

NP Completeness I
By Sariel Har-Peled, December 17, 2012¬ Version: 1.05

"Then you must begin a reading program immediately so that you man understand the crises
of our age," Ignatius said solemnly. "Begin with the late Romans, including Boethius, of course.
Then you should dip rather extensively into early Medieval. You may skip the Renaissance
and the Enlightenment. That is mostly dangerous propaganda. Now, that I think about of it,
you had better skip the Romantics and the Victorians, too. For the contemporary period, you
should study some selected comic books."

"You’re fantastic."
"I recommend Batman especially, for he tends to transcend the abysmal society in which

he’s found himself. His morality is rather rigid, also. I rather respect Batman."
– A confederacy of Dunces, John Kennedy Toole.

1.1 Introduction
The question governing this course, would be the development of efficient algorithms. Hope-
fully, what is an algorithm is a well understood concept. But what is an efficient algorithm?
A natural answer (but not the only one!) is an algorithm that runs quickly.

What do we mean by quickly? Well, we would like our algorithm to:
(A) Scale with input size. That is, it should be able to handle large and hopefully huge

inputs.
(B) Low level implementation details should not matter, since they correspond to small

improvements in performance. Since faster CPUs keep appearing it follows that
such improvements would (usually) be taken care of by hardware.

(C) What we will really care about are asymptotic running time. Explicitly, polynomial
time.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Input size n2 ops n3 ops n4 ops 2n ops n! ops
5 0 secs 0 secs 0 secs 0 secs 0 secs

20 0 secs 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 0 secs 3 · 109 years
50 0 secs 0 secs 0 secs 0 secs never
60 0 secs 0 secs 0 secs 7 mins never
70 0 secs 0 secs 0 secs 5 days never
80 0 secs 0 secs 0 secs 15.3 years never
90 0 secs 0 secs 0 secs 15,701 years never

100 0 secs 0 secs 0 secs 107 years never
8000 0 secs 0 secs 1 secs never never

16000 0 secs 0 secs 26 secs never never
32000 0 secs 0 secs 6 mins never never
64000 0 secs 0 secs 111 mins never never

200,000 0 secs 3 secs 7 days never never
2,000,000 0 secs 53 mins 202.943 years never never

108 4 secs 12.6839 years 109 years never never
109 6 mins 12683.9 years 1013 years never never

Figure 1.1: Running time as function of input size. Algorithms with exponential running
times can handle only relatively small inputs. We assume here that the computer can
do 2.5 · 1015 operations per second, and the functions are the exact number of operations
performed. Remember – never is a long time to wait for a computation to be completed.

In our discussion, we will consider the input size to be n, and we would like to bound
the overall running time by a function of n which is asymptotically as small as possible. An
algorithm with better asymptotic running time would be considered to be better.

Example 1.1.1. It is illuminating to consider a concrete example. So assume we have an
algorithm for a problem that needs to perform c2n operations to handle an input of size
n, where c is a small constant (say 10). Let assume that we have a CPU that can do 109

operations a second. (A somewhat conservative assumption, as currently [Jan 2006], the
blue-gene supercomputer can do about 3 · 1014 floating-point operations a second. Since
this super computer has about 131, 072 CPUs, it is not something you would have on your
desktop any time soon.) Since 210 ≈ 103, you have that our (cheap) computer can solve in
(roughly) 10 seconds a problem of size n = 27.

But what if we increase the problem size to n = 54? This would take our computer about
3 million years to solve. (It is better to just wait for faster computers to show up, and then
try to solve the problem. Although there are good reasons to believe that the exponential
growth in computer performance we saw in the last 40 years is about to end. Thus, unless a

But the recently announced Super Computer that would be completed in 2012 in Urbana, is naturally
way faster. It supposedly would do 1015 operations a second (i.e., petaflop). Blue-gene probably can not
sustain its theoretical speed stated above, which is only slightly slower.

2

substantial breakthrough in computing happens, it might be that solving problems of size,
say, n = 100 for this problem would forever be outside our reach.)

The situation dramatically change if we consider an algorithm with running time 10n2.
Then, in one second our computer can handle input of size n = 104. Problem of size n = 108

can be solved in 10n2/109 = 1017−9 = 108 which is about 3 years of computing (but blue-gene
might be able to solve it in less than 20 minutes!).

Thus, algorithms that have asymptotically a polynomial running time (i.e., the algorithms
running time is bounded by O(nc) where c is a constant) are able to solve large instances of
the input and can solve the problem even if the problem size increases dramatically.

Can we solve all problems in polynomial time? The answer to this question is un-
fortunately no. There are several synthetic examples of this, but it is believed that a large
class of important problems can not be solved in polynomial time.

Circuit Satisfiability
Instance: A circuit C with m inputs
Question: Is there an input for C such that C returns true for it.

x1

x2

x3

x4

x5

And Or Not

x

y
x ∧ y x

y
x ∨ y x x

As a concrete example, consider the circuit depicted on
the right.

Currently, all solutions known to Circuit Satisfiability re-
quire checking all possibilities, requiring (roughly) 2m time.
Which is exponential time and too slow to be useful in solving
large instances of the problem.

This leads us to the most important open question in
theoretical computer science:

Question 1.1.2. Can one solve Circuit Satisfiability in polynomial time?

The common belief is that Circuit Satisfiability can NOT be solved in polynomial time.
Circuit Satisfiability has two interesting properties.

(A) Given a supposed positive solution, with a detailed assignment (i.e., proof): x1 ←
0, x2 ← 1, ..., xm ← 1 one can verify in polynomial time if this assignment really
satisfies C. This is done by computing what every gate in the circuit what its output
is for this input. Thus, computing the output of C for its input. This requires
evaluating the gates of C in the right order, and there are some technicalities involved,
which we are ignoring. (But you should verify that you know how to write a program
that does that efficiently.)
Intuitively, this is the difference in hardness between coming up with a proof (hard),
and checking that a proof is correct (easy).

(B) It is a decision problem. For a specific input an algorithm that solves this problem
has to output either TRUE or FALSE.

3

1.2 Complexity classes
Definition 1.2.1 (P: Polynomial time). Let P denote is the class of all decision prob-
lems that can be solved in polynomial time in the size of the input.

Definition 1.2.2 (NP: Nondeterministic Polynomial time). Let NP be the class of
all decision problems that can be verified in polynomial time. Namely, for an input of size n,
if the solution to the given instance is true, one (i.e., an oracle) can provide you with a proof
(of polynomial length!) that the answer is indeed TRUE for this instance. Furthermore, you
can verify this proof in polynomial time in the length of the proof.

Figure 1.2: The relation be-
tween the different complexity
classes P, NP, and co-NP.

Clearly, if a decision problem can be solved in poly-
nomial time, then it can be verified in polynomial time.
Thus, P ⊆ NP.

Remark. The notation NP stands for Non-deterministic
Polynomial. The name come from a formal definition
of this class using Turing machines where the machines
first guesses (i.e., the non-deterministic stage) the proof
that the instance is TRUE, and then the algorithm ver-
ifies the proof.

Definition 1.2.3 (co-NP). The class co-NP is the opposite of NP – if the answer is
FALSE, then there exists a short proof for this negative answer, and this proof can be verified
in polynomial time.

See Figure 1.2 for the currently believed relationship between these classes (of course, as
mentioned above, P ⊆ NP and P ⊆ co-NP is easy to verify). Note, that it is quite possible
that P = NP = co-NP, although this would be extremely surprising.

Definition 1.2.4. A problem Π is NP-Hard, if being able to solve Π in polynomial time
implies that P = NP.

Question 1.2.5. Are there any problems which are NP-Hard?

Intuitively, being NP-Hard implies that a problem is ridiculously hard. Conceptually,
it would imply that proving and verifying are equally hard - which nobody that did CS 573
believes is true.

In particular, a problem which is NP-Hard is at least as hard as ALL the problems in
NP, as such it is safe to assume, based on overwhelming evidence that it can not be solved
in polynomial time.

Theorem 1.2.6 (Cook’s Theorem). Circuit Satisfiability is NP-Hard.

4

Definition 1.2.7. A problem Π is NP-Complete (NPC in short) if it is both NP-Hard
and in NP.

Clearly, Circuit Satisfiability is NP-Complete, since we can verify a positive solution in
polynomial time in the size of the circuit,

By now, thousands of problems have been shown to
be NP-Complete. It is extremely unlikely that any
of them can be solved in polynomial time.

Definition 1.2.8. In the formula satisfiability problem,
(a.k.a. SAT) we are given a formula, for example:(

a ∨ b ∨ c ∨ d
)
⇐⇒

(
(b ∧ c) ∨ (a⇒ d) ∨ (c , a ∧ b)

)
and the question is whether we can find an assignment
to the variables a, b, c, . . . such that the formula evalu-
ates to TRUE.

NP

co-NP

NP-Hard

P

NP-Complete

Figure 1.3: The relation between
the complexity classes.

It seems that SAT and Circuit Satisfiability are “similar” and as such both should be
NP-Hard.

1.2.1 Reductions
Let A and B be two decision problems.

Given an input I for problem A, a reduction is a transformation of the input I into a
new input I ′, such that

A(I) is TRUE ⇔ B(I ′) is TRUE.

Thus, one can solve A by first transforming and input I into an input I ′ of B, and solving
B(I ′).

This idea of using reductions is omnipresent, and used almost in any program you write.
Let T : I → I ′ be the input transformation that maps A into B. How fast is T? Well,

for our nefarious purposes we need polynomial reductions; that is, reductions that take
polynomial time.

For example, given an instance of Circuit Satisfiability, we would like to generate an
equivalent formula. We will explicitly write down what the circuit computes in a formula
form. To see how to do this, consider the following example.

x1

x2

x3

x4

x5

y1 y4

y5

y2
y3

y7

y6

y8

y1 = x1 ∧ x4 y2 = x4 y3 = y2 ∧ x3
y4 = x2 ∨ y1 y5 = x2 y6 = x5
y7 = y3 ∨ y5 y8 = y4 ∧ y7 ∧ y6 y8

5

We introduced a variable for each wire in the circuit, and we wrote down explicitly what
each gate computes. Namely, we wrote a formula for each gate, which holds only if the gate
computes correctly the output for its given input.

Input: boolean circuit C
⇓ O(size of C)

transform C into boolean formula F

⇓

Find SAT assign’ for F using SAT solver

⇓
Return TRUE if F is sat’, otherwise FALSE.

Figure 1.4: Algorithm for solving CSAT using
an algorithm that solves the SAT problem

The circuit is satisfiable if and only
if there is an assignment such that all
the above formulas hold. Alternatively,
the circuit is satisfiable if and only if the
following (single) formula is satisfiable

(y1 = x1 ∧ x4) ∧(y2 = x4) ∧(y3 = y2 ∧ x3)
∧(y4 = x2 ∨ y1) ∧(y5 = x2)
∧(y6 = x5) ∧(y7 = y3 ∨ y5)
∧(y8 = y4 ∧ y7 ∧ y6) ∧ y8.

It is easy to verify that this transforma-
tion can be done in polynomial time.

The resulting reduction is depicted in
Figure 1.4.

Namely, given a solver for SAT that runs in TSAT(n), we can solve the CSAT problem in
time

TCSAT (n) ≤ O(n) + TSAT (O(n)),

where n is the size of the input circuit. Namely, if we have polynomial time algorithm that
solves SAT then we can solve CSAT in polynomial time.

Another way of looking at it, is that we believe that solving CSAT requires exponential
time; namely, TCSAT(n) ≥ 2n. Which implies by the above reduction that

2n ≤ TCSAT (n) ≤ O(n) + TSAT (O(n)).

Namely, TSAT(n) ≥ 2n/c − O(n), where c is some positive constant. Namely, if we believe
that we need exponential time to solve CSAT then we need exponential time to solve SAT.

This implies that if SAT ∈ P then CSAT ∈ P.
We just proved that SAT is as hard as CSAT. Clearly, SAT ∈ NP which implies the

following theorem.

Theorem 1.2.9. SAT (formula satisfiability) is NP-Complete.

1.3 More NP-Complete problems

1.3.1 3SAT
A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (AND) of
several clauses, where a clause is the disjunction (or) of several literals, and a literal is either

6

a variable or a negation of a variable. For example, the following is a CNF formula:

clause︷ ︸︸ ︷
(a ∨ b ∨ c)∧(a ∨ e) ∧ (c ∨ e).

Definition 1.3.1. 3CNF formula is a CNF formula with exactly three literals in each clause.

The problem 3SAT is formula satisfiability when the formula is restricted to be a 3CNF
formula.

Theorem 1.3.2. 3SAT is NP-Complete.

Proof : First, it is easy to verify that 3SAT is in NP.
Next, we will show that 3SAT is NP-Complete by a reduction from CSAT (i.e., Circuit

Satisfiability). As such, our input is a circuit C of size n. We will transform it into a 3CNF in
several steps:

(A) Make sure every AND/OR gate has only two inputs. If (say) an AND gate have
more inputs, we replace it by cascaded tree of AND gates, each one of degree two.

(B) Write down the circuit as a formula by traversing the circuit, as was done for SAT.
Let F be the resulting formula.
A clause corresponding to a gate in F will be of the following forms: (i) a = b ∧ c
if it corresponds to an AND gate, (ii) a = b ∨ c if it corresponds to an OR gate,
and (iii) a = b if it corresponds to a NOT gate. Notice, that except for the single
clause corresponding to the output of the circuit, all clauses are of this form. The
clause that corresponds to the output is a single variable.

(C) Change every gate clause into several CNF clauses.
(i) For example, an AND gate clause of the form a = b∧ c will be translated into(

a ∨ b ∨ c
)
∧(a ∨ b) ∧(a ∨ c) . (1.1)

Note that Eq. (1.1) is true if and only if a = b ∧ c is true. Namely, we can
replace the clause a = b ∧ c in F by Eq. (1.1).

Input: boolean circuit
⇓ O(n)

3CNF formula
⇓

Decide if given formula is satsifiable using 3SAT solver

⇓
Return TRUE or FALSE

Figure 1.5: Reduction from CSAT to 3SAT

7

(ii) Similarly, an OR gate clause the form a = b∨ c in F will be transformed into

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c).

(iii) Finally, a clause a = b, corresponding to a NOT gate, will be transformed
into

(a ∨ b) ∧ (a ∨ b).
(D) Make sure every clause is exactly three literals. Thus, a single variable clause a

would be replaced by

(a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y),

by introducing two new dummy variables x and y. And a two variable clause a∨ b
would be replaced by

(a ∨ b ∨ y) ∧ (a ∨ b ∨ y),
by introducing the dummy variable y.

This completes the reduction, and results in a new 3CNF formula G which is satisfiable if and
only if the original circuit C is satisfiable. The reduction is depicted in Figure 1.5. Namely,
we generated an equivalent 3CNF to the original circuit. We conclude that if T3SAT(n) is the
time required to solve 3SAT then

TCSAT (n) ≤ O(n) + T3SAT (O(n)),

which implies that if we have a polynomial time algorithm for 3SAT, we would solve CSAT
is polynomial time. Namely, 3SAT is NP-Complete.

1.4 Bibliographical Notes
Cook’s theorem was proved by Stephen Cook (http://en.wikipedia.org/wiki/Stephen_
Cook). It was proved independently by Leonid Levin (http://en.wikipedia.org/wiki/
Leonid_Levin) more or less in the same time. Thus, this theorem should be referred to as
the Cook-Levin theorem.

The standard text on this topic is [GJ90]. Another useful book is [ACG+99], which is a
more recent and more updated, and contain more advanced stuff.

Bibliography
[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and

M. Protasi. Complexity and approximation. Springer-Verlag, Berlin, 1999.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1990.

8

http://en.wikipedia.org/wiki/Stephen_Cook
http://en.wikipedia.org/wiki/Stephen_Cook
http://en.wikipedia.org/wiki/Leonid_Levin
http://en.wikipedia.org/wiki/Leonid_Levin

	1 NP Completeness I
	1.1 Introduction
	1.2 Complexity classes
	1.2.1 Reductions

	1.3 More NP-Complete problems
	1.3.1 3SAT

	1.4 Bibliographical Notes

	Bibliography

