
Chapter 35

Exercises - Miscellaneous
By Sariel Har-Peled, December 9, 2012¬ Version: 1.0

35.1 Data structures

35.1.1 Furthest Neighbor
[20 Points]

Let P = {p1, . . . , pn} be a set of n points in the plane.

(a) [10 Points] A partition P = (S, T) of P is a decomposition of P into two sets S, T ⊆ P ,
such that P = S ∪ T , and S ∩ T = ∅.
Describe a deterministic algorithm to compute m = O(log n) partitions P1, . . . ,Pm of
P , such that for any pair of distinct points p, q ∈ P , there exists a partition Pi = (Si, Ti),
where 1 ≤ i ≤ m, such that p ∈ Si and q ∈ Ti or vice versa (i.e., p ∈ Ti and q ∈ Si).
The running time of your algorithm should be O(n log n).

(b) [10 Points] Assume that you are given a black-box B, such that given a set of points Q
in the plane, one can compute in O(|Q| log |Q|) time, a data-structure X , such that given
any query point w in the plane, one can compute, in O(log |Q|) time, using the data-
structure, the furthest point in Q from w (i.e., this is the point in Q with largest distance
from w). To make things interesting, assume that if w ∈ Q, then the data-structure does
not work.
Describe an algorithm that uses B, and such that computes, in O(n log2 n) time, for
every point p ∈ P , its furthest neighbor fp in P \ {p}.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

There is a very nice and simple randomized algorithm for this problem, you can think about it if you
are interested.

1

http://creativecommons.org/licenses/by-nc/3.0/

35.1.2 Free lunch.
[10 Points]

1. [3 Points] Provide a detailed description of the procedure that computes the longest
ascending subsequence in a given sequence of n numbers. The procedure should use only
arrays, and should output together with the length of the subsequence, the subsequence
itself.

2. [4 Points] Provide a data-structure, that store pairs (ai, bi) of numbers, such that
an insertion/deletion operation takes O(log n) time, where n is the total number of
elements inserted. And furthermore, given a query interval [α, β], it can output in
O(log n) time, the pair realizing

max
(ai,bi)∈S,ai∈[α,β]

bi,

where S is the current set of pairs.

3. [3 Points] Using (b), describe an O(n log n) time algorithm for computing the longest
ascending subsequence given a sequence of n numbers.

35.2 Divide and Conqueror

35.2.1 Divide-and-Conquer Multiplication
1. [5 Points] Show how to multiply two linear polynomials ax + b and cx + d using only

three multiplications. (Hint: One of the multiplications is (a + b) · (c + d).)

2. [5 Points] Give two divide-and-conquer algorithms for multiplying two polynomials of
degree-bound n that run in time Θ(nlg 3). The first algorithm should divide the input
polynomial coefficients into a high half and a low half, and the second algorithm should
divide them according to whether their index is odd or even.

3. [5 Points] Show that two n-bit integers can be multiplied in O(nlg 3) steps, where each
step operates on at most a constant number of 1-bit values.

35.3 Fast Fourier Transform

35.3.1 3sum
Consider two sets A and B, each having n integers in the range from 0 to 10n. We wish to
compute the Cartesian sum of A and B, defined by

C = {x + y : x ∈ A and y ∈ B}.

2

Note that the integers in C are in the range from 0 to 20n. We want to find the elements
of C and the number of times each element of C is realized as a sum of elements in A and
B. Show that the problem can be solved in O(n lg n) time. (Hint: Represent A and B as
polynomials of degree at most 10n.)

35.3.2 Common subsequence
Given two sequences, a1, . . . , an and b1, . . . , bm of real numbers, We want to determine
whether there is an i ≥ 0, such that b1 = ai+1, b2 = ai+2, . . . , bm = ai+m. Show how to
solve this problem in O(n log n) time with high probability.

35.3.3 Computing Polynomials Quickly
In the following, assume that given two polynomials p(x), q(x) of degree at most n, one can
compute the polynomial remainder of p(x) mod q(x) in O(n log n) time. The remainder
of r(x) = p(x) mod q(x) is the unique polynomial of degree smaller than this of q(x), such
that p(x) = q(x) ∗ d(x) + r(x), where d(x) is a polynomial.

Let p(x) = ∑n−1
i=0 aix

i be a given polynomial.

1. [4 Points] Prove that p(x) mod (x− z) = p(z), for all z.

2. [4 Points] We want to evaluate p(·) on the points x0, x1, . . . , xn−1. Let

Pij(x) =
j∏

k=i

(x− xk)

and
Qij(x) = p(x) mod Pij(x).

Observe that the degree of Qij is at most j − i.
Prove that, for all x, Qkk(x) = p(xk) and Q0,n−1(x) = p(x).

3. [4 Points] Prove that for i ≤ k ≤ j, we have

∀x Qik(x) = Qij(x) mod Pik(x)

and
∀x Qkj(x) = Qij(x) mod Pkj(x).

4. [8 Points] Given an O(n log2 n) time algorithm to evaluate p(x0), . . . , p(xn−1). Here
x0, . . . , xn−1 are n given real numbers.

3

35.4 Union-Find

35.4.1 Linear time Union-Find,
[20 Points]

1. [2 Points] With path compression and union by rank, during the lifetime of a Union-
Find data-structure, how many elements would have rank equal to ⌊lg n− 5⌋, where
there are n elements stored in the data-structure?

2. [2 Points] Same question, for rank ⌊(lg n)/2⌋.

3. [4 Points] Prove that in a set of n elements, a sequence of n consecutive Find opera-
tions take O(n) time in total.

4. [2 Points]
Write a non-recursive version of Find with path compression.

5. [6 Points] Show that any sequence of m MakeSet, Find, and Union operations,
where all the Union operations appear before any of the Find operations, takes only
O(m) time if both path compression and union by rank are used.

6. [4 Points] What happens in the same situation if only the path compression is used?

35.4.2 Off-line Minimum
[20 Points]

The off-line minimum problem asks us to maintain a dynamic set T of elements from
the domain {1, 2, . . . , n} under the operations Insert and Extract-Min. We are given
a sequence S of n Insert and m Extract-Min calls, where each key in {1, 2, . . . , n} is
inserted exactly once. We wish to determine which key is returned by each Extract-Min
call. Specifically, we wish to fill in an array extracted[1 . . . m], where for i = 1, 2, . . . , m,
extracted[i] is the key returned by the ith Extract-Min call. The problem is “off-line” in
the sense that we are allowed to process the entire sequence S before determining any of the
returned keys.

1. [4 Points]
In the following instance of the off-line minimum problem, each Insert is represented
by a number and each Extract-Min is represented by the letter E:

4, 8, E, 3, E, 9, 2, 6, E, E, E, 1, 7, E, 5.

Fill in the correct values in the extracted array.

4

2. [8 Points]
To develop an algorithm for this problem, we break the sequence S into homogeneous
subsequences. That is, we represent S by
I1, E, I2, E, I3, . . . , Im, E, Im+1,

where each E represents a single Extract-Min call and each Ij represents a (possibly
empty) sequence of Insert calls. For each subsequence Ij, we initially place the keys
inserted by these operations into a set Kj, which is empty if Ij is empty. We then do
the following.

Off-Line-Minimum(m,n)
1 for i← 1 to n
2 do determine j such that i ∈ Kj

3 if j , m + 1
4 then extracted[j]← i
5 let l be the smallest value greater than j for which set Kl exists
6 Kl ← Kj ∪Kl, destroying Kj

7 return extracted

Argue that the array extracted returned by Off-Line-Minimum is correct.

3. [8 Points]
Describe how to implement Off-Line-Minimum efficiently with a disjoint-set data
structure. Give a tight bound on the worst-case running time of your implementation.

35.4.3 Tarjan’s Off-Line Least-Common-Ancestors Algorithm
[20 Points]

The least common ancestor of two nodes u and v in a rooted tree T is the node w that
is an ancestor of both u and v and that has the greatest depth in T . In the off-line least-
common-ancestors problem, we are given a rooted tree T and an arbitrary set P = {{u, v}}
of unordered pairs of nodes in T , and we wish to determine the least common ancestor of
each pair in P .

To solve the off-line least-common-ancestors problem, the following procedure performs
a tree walk of T with the initial call LCA(root[T]). Each node is assumed to be colored
white prior to the walk.

5

LCA(u)
1 MakeSet(u)
2 ancestor[Find(u)]← u
3 for each child v of u in T
4 do LCA(v)
5 Union(u, v)
6 ancestor[Find(u)]← u
7 color[u]← black
8 for each node v such that {u, v} ∈ P
9 do if color[v] = black
10 then print “The least common ancestor of” u “and” v “is”
ancestor[Find(v)]

1. [4 Points] Argue that line 10 is executed exactly once for each pair {u, v} ∈ P .

2. [4 Points] Argue that at the time of the call LCA(u), the number of sets in the
disjoint-set data structure is equal to the depth of u in T .

3. [6 Points] Prove that LCA correctly prints the least common ancestor of u and v for
each pair {u, v} ∈ P .

4. [6 Points] Analyze the running time of LCA, assuming that we use the implementation
of the disjoint-set data structure with path compression and union by rank.

35.4.4 Ackermann Function
[20 Points]

The Ackermann’s function Ai(n) is defined as follows:

Ai(n) =

4 if n = 1

4n if i = 1
Ai−1(Ai(n− 1)) otherwise

Here we define A(x) = Ax(x). And we define α(n) as a pseudo-inverse function of A(x).
That is, α(n) is the least x such that n ≤ A(x).

1. [4 Points] Give a precise description of what are the functions: A2(n), A3(n), and
A4(n).

2. [4 Points] What is the number A(4)?

3. [4 Points] Prove that lim
n→∞

α(n)
log∗(n)

= 0.

6

4. [4 Points] We define

log∗∗ n = min

i ≥ 1

∣∣∣∣∣∣∣ log∗ . . . log∗︸ ︷︷ ︸
i times

n ≤ 2

(i.e., how many times do you have to take log∗ of a number before you get a number

smaller than 2). Prove that lim
n→∞

√
α(n)

log∗∗(n)
= 0.

5. [4 Points] Prove that log(α(n)) ≤ α(log∗∗ n) for n large enough.

35.5 Lower bounds

35.5.1 Sort them Up
[20 Points]

A sequence of real numbers x1, . . . , xn is k-mixed, if there exists a permutation π, such
that xπ(i) ≤ xπ(i+1) and |π(i)− i| ≤ k, for i = 1, . . . , n− 1.

1. [10 Points] Give a fast algorithm for sorting x1, . . . , xn.

2. [10 Points] Prove a lower bound in the comparison model on the running time of your
algorithm.

35.5.2 Another Lower Bound
[20 Points]

Let b1 ≤ b2 ≤ b3 ≤ . . . ≤ bk be k given sorted numbers, and let A be a set of n arbitrary
numbers A = {a1, . . . , an}, such that b1 < ai < bk, for i = 1, . . . , n

The rank v = r(ai) of ai is the index, such that bv < ai < bv+1.
Prove, that in the comparison model, any algorithm that outputs the ranks r(a1), . . . , r(an)

must take Ω(n log k) running time in the worst case.

35.6 Number theory

35.6.1 Some number theory.
[10 Points]

1. [5 Points] Prove that if gcd(m, n) = 1, then mϕ(n) + nϕ(m) ≡ 1(modmn).

2. [5 Points] Give two distinct proofs that there are an infinite number of prime numbers.

7

35.6.2 Even More Number Theory
[10 Points]

Prove that |P (n)| = Ω(n2), where P (n) =
{
(a, b)

∣∣∣ a, b ∈ ZZ , 0 < a < b ≤ n, gcd(a, b) = 1
}
.

35.6.3 Yet Another Number Theory Question
[20 Points]

1. [2 Points] Prove that the product of all primes p, for m < p ≤ 2m is at most
(

2m
m

)
.

2. [4 Points] Using (a), prove that the number of all primes between m and 2m is
O(m/ ln m).

3. [3 Points] Using (b), prove that the number of primes smaller than n is O(n/ ln n).

4. [2 Points] Prove that if 2k divides
(

2m
m

)
then 2k ≤ 2m.

5. [5 Points] (Hard) Prove that for a prime p, if pk divides
(

2m
m

)
then pk ≤ 2m.

6. [4 Points] Using (e), prove that that the number of primes between 1 and n is
Ω(n/ ln n). (Hint: use the fact that

(
2m
m

)
≥ 22m/(2m).)

35.7 Sorting networks

35.7.1 Lower bound on sorting network
[10 Points]

Prove that an n-input sorting network must contain at least one comparator between the
ith and (i + 1)st lines for all i = 1, 2, ..., n− 1.

35.7.2 First sort, then partition
Suppose that we have 2n elements < a1, a2, ..., a2n > and wish to partition them into the
n smallest and the n largest. Prove that we can do this in constant additional depth after
separately sorting < a1, a2, ..., an > and < an+1, an+2, ..., a2n >.

35.7.3 Easy points.
[20 Points]

Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of
a merging network with 2k inputs. Suppose that we have a sequence of n numbers to be
sorted and we know that every number is within k positions of its correct position in the

8

sorted order, which means that we need to move each number at most (k − 1) positions to
sort the inputs. For example, in the sequence 3 2 1 4 5 8 7 6 9, every number is within 3
positions of its correct position. But in sequence 3 2 1 4 5 9 8 7 6, the number 9 and 6 are
outside 3 positions of its correct position.
Show that we can sort the n numbers in depth S(k) + 2M(k). (You need to prove your
answer is correct.)

35.7.4 Matrix Madness
[20 Points]

We can sort the entries of an m×m matrix by repeating the following procedure k times:

1. Sort each odd-numbered row into monotonically increasing order.
2. Sort each even-numbered row into monotonically decreasing order.
3. Sort each column into monotonically increasing order.

1. [8 Points] Suppose the matrix contains only 0’s and 1’s. We repeat the above proce-
dure again and again until no changes occur. In what order should we read the matrix
to obtain the sorted output (m × m numbers in increasing order)? Prove that any
m×m matrix of 0’s and 1’s will be finally sorted.

2. [8 Points] Prove that by repeating the above procedure, any matrix of real numbers
can be sorted. [Hint:Refer to the proof of the zero-one principle.]

3. [4 Points] Suppose k iterations are required for this procedure to sort the m × m
numbers. Give an upper bound for k. The tighter your upper bound the better (prove
you bound).

35.8 Max Cut

35.8.1 Splitting and splicing
Let G = (V, E) be a graph with n vertices and m edges. A splitting of G is a partition of
V into two sets V1, V2, such that V = V1 ∪ V2, and V1 ∩ V2 = ∅. The cardinality of the split
(V1, V2), denoted by m(V1, V2), is the number of edges in G that has one vertex in V1, and
one vertex in V2. Namely,

m(V1, V2) =
∣∣∣{e

∣∣∣ e = {uv} ∈ E(G), u ∈ V1, v ∈ V2
}∣∣∣ .

Let ∫\(G) = max
V1

m(V1, V2) be the maximum cardinality of such a split. Describe a de-
terministic polynomial time algorithm that computes a splitting (V1, V2) of G, such that
m(V1, V2) ≥ ∫\(G)/2. (Hint: Start from an arbitrary split, and continue in a greedy fashion
to improve it.)

9

	35 Exercises - Miscellaneous
	35.1 Data structures
	35.1.1 Furthest Neighbor
	35.1.2 Free lunch.

	35.2 Divide and Conqueror
	35.2.1 Divide-and-Conquer Multiplication

	35.3 Fast Fourier Transform
	35.3.1 3sum
	35.3.2 Common subsequence
	35.3.3 Computing Polynomials Quickly

	35.4 Union-Find
	35.4.1 Linear time Union-Find,
	35.4.2 Off-line Minimum
	35.4.3 Tarjan's Off-Line Least-Common-Ancestors Algorithm
	35.4.4 Ackermann Function

	35.5 Lower bounds
	35.5.1 Sort them Up
	35.5.2 Another Lower Bound

	35.6 Number theory
	35.6.1 Some number theory.
	35.6.2 Even More Number Theory
	35.6.3 Yet Another Number Theory Question

	35.7 Sorting networks
	35.7.1 Lower bound on sorting network
	35.7.2 First sort, then partition
	35.7.3 Easy points.
	35.7.4 Matrix Madness

	35.8 Max Cut
	35.8.1 Splitting and splicing

