
CS 573: Algorithms, Fall 2012
Homework 4, due Monday, Nov. 12, 23:59:59, 2012

Version 0.22

Name:
Net ID:

Neatly print your name(s), NetID(s). If you are off campus, please submit the homework on
moodle, otherwise submit the homework in SC 3306 (or sliding it under the door). Please
solve each problem on a separate page.

“Is there anything in the Geneva Convention about the rules of war in peacetime?” Stanko
wanted to know, crawling back toward the truck.
“Absolutely nothing,” Caulec assured him. “The rules of war apply only in wartime. In
peacetime, anything goes.”

– Gasp, Romain Gary

Required Problems

1. Some preparations.
[30 Points]
(A) [10 Points] Show how to modify a treap, such that one can, in O(log n) time

(with high probability), insert an element, delete an element, find an element, and
report the rank of a given element in the treap. As a reminder, the rank of an
element x in a set X of n values is the number of elements of X strictly smaller
than x.

(B) [10 Points] Consider two permutations π, σ of {1, . . . , n}. The edit distance
between π and σ is the minimum number of times one has to flip consecutive pair
of elements in π to get σ. For example, if π = ⟨4, 3, 2, 1⟩ and π = ⟨1, 2, 3, 4⟩ then
the edit distance is 6. Indeed:⟨ ∗︷︸︸︷

4, 3, 2, 1
⟩

=⇒
⟨

3,

∗︷︸︸︷
4, 2, 1

⟩
=⇒

⟨
3, 2,

∗︷︸︸︷
4, 1

⟩
=⇒

⟨ ∗︷︸︸︷
3, 2, 1, 4

⟩

=⇒
⟨

2,

∗︷︸︸︷
3, 1, 4

⟩
=⇒

⟨ ∗︷︸︸︷
2, 1, 3, 4

⟩
=⇒ ⟨1, 2, 3, 4⟩ .

Describe an O(n log n) time algorithm, using (A), that computes the edit dis-
tance between permutations. Hint: Consider the target permutation to always be
⟨1, 2, . . . , n⟩, then show to remove this assumption (hint: the numbers here are
just labels).

1



(C) [10 Points] Let L = {ℓ1, . . . , ℓn} be a set of n linear functions, where ℓi(x) =
αix + βi. You can safely assume that all the αi and βi are non-zero and distinct.
One can interpret a set of such functions as a set of lines in the plane, where the
ith line is y = αix + βi. A vertex is an intersection point of two lines. Assume
that all the pairs of lines of L have distinct vertices, and furthermore, they all have
x coordinate in the range [0, 1]. Let V be this set of

(
n
2

)
vertices.

Given two numbers x0 and x1, provide an O(n log n) time algorithm (using (B),
that outputs the number of vertices in V that have x coordinate in the interval
[x0, x1]. To keep things simple, you can safely assume that no vertex in V has an
x-coordinate that is equal to either x0 or x1. (Hint: Consider the order in which
the lines of L intersect the vertical lines x = x0 and x = x1. What does a vertex
corresponds to?)

2. Parametric search.
[40 Points]
Given a set of lines L as above, and (implicitly) its set of vertices V (we assume all the
vertices have distinct x value), let the rank of a vertex v ∈ V be the number of vertices
in V that have smaller x coordinate than v. (Again, you can assume all the vertices in
V have x coordinate in the range [0, 1].) Given k, we are interested in computing the
vertex of rank k in V . Let this unknown vertex be v∗ = (x∗, y∗).
(A) [5 Points] Describe an O(n2) time algorithm for computing v∗.
(B) [10 Points] Quadratic time is pathetic. But doing better requires quite a bit of

cleverness. To this end, given a set X of O(n) vertices in V , show how to partition
X, in O(n log2 n) time, into the set of all the vertices of X left of v∗, and all the
vertices of X right of v∗. (If one of these vertices is v∗ then bingo - we are done.)
Of course, you are not given v∗, but you can (and must) use the algorithms from
the first question to solve this part.

(C) [5 Points] Consider a pair of lines ℓi, ℓj ∈ L, and let v be their intersection.
Consider the vertical line τ ≡ (x = x∗). Given that v∗ is (say) to the left of v,
show how to decide (in constant time) if ℓi is above ℓj along the line τ .

(D) [10 Points] We are going to do the most bizarre thing ever – get ready. We want
to sort the lines of L in their order along the vertical line τ ≡ (x = x∗) (without
knowing v∗ no less!).
To this end, assume that you are given an explicit construction of sorting network
for n numbers. Specifically, we are given the layers G1, . . . , Gm (m = O(log2 n)),
where Gk is the set of gates in the kth layer of the sorting network. Each gate
is a pair of numbers (i, j) that corresponds to comparing the number on the ith
wire to the number on the jth wire. It is not hard to compute the sets G1, . . . , Gm

from the construction shown in class, but lets just assume this is given.
We are going to sort the lines along τ using this sorting network. Show how to
resolve all the comparisons of the gates of Gi, in O(n log2 n) time, using (B) and
(C).

(E) [10 Points] Describe how using the above, one can output v∗ in O(n log4 n) time.

2



3. Computing Polynomials Quickly
[30 Points]
In the following, assume that given two polynomials p(x), q(x) of degree at most n,
one can compute the polynomial remainder of p(x) mod q(x) in O(n log n) time. The
remainder of r(x) = p(x) mod q(x) is the unique polynomial of degree smaller than
this of q(x), such that p(x) = q(x) ∗ d(x) + r(x), where d(x) is a polynomial.
Let p(x) = ∑n−1

i=0 aix
i be a given polynomial.

(A) [8 Points] Prove that p(x) mod (x − z) = p(z), for all z.
(B) [8 Points] We want to evaluate p(·) on the points x0, x1, . . . , xn−1. Let

Pij(x) =
j∏

k=i

(x − xk)

and
Qij(x) = p(x) mod Pij(x).

Observe that the degree of Qij is at most j − i.
Prove that, for all x, Qkk(x) = p(xk) and Q0,n−1(x) = p(x).

(C) [6 Points] Prove that for i ≤ k ≤ j, we have

∀x Qik(x) = Qij(x) mod Pik(x)

and
∀x Qkj(x) = Qij(x) mod Pkj(x).

(D) [8 Points] Given an O(n log2 n) time algorithm to evaluate p(x0), . . . , p(xn−1).
Here x0, . . . , xn−1 are n given real numbers.

3


