
Chapter 34

Exercises - Network Flow
By Sariel Har-Peled, November 30, 2012¬ Version: 1.02

This chapter include problems that are realted to network flow.

34.1 Network Flow

34.1.1 The good, the bad, and the middle.
[10 Points]

Suppose you’re looking at a flow network G with source s and sink t, and you want to
be able to express something like the following intuitive notion: Some nodes are clearly on
the “source side” of the main bottlenecks; some nodes are clearly on the “sink side” of the
main bottlenecks; and some nodes are in the middle. However, G can have many minimum
cuts, so we have to be careful in how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this sort.

• We say a node v is upstream if, for all minimum s-t cuts (A, B), we have v ∈ A – that
is, v lies on the source side of every minimum cut.

• We say a node v is downstream if, for all minimum s-t cuts (A, B), we have v ∈ B –
that is, v lies on the sink side of every minimum cut.

• We say a node v is central if it is neither upstream nor downstream; there is at least
one minimum s-t cut (A, B) for which v ∈ A, and at least one minimum s-t cut (A′, B′)
for which v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of its nodes as being
upstream, downstream, or central. The running time of your algorithm should be within a
constant factor of the time required to compute a single maximum flow.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

34.1.2 Ad hoc networks
[20 Points]

Ad hoc networks are made up of low-powered wireless devices, have been proposed for
situations like natural disasters in which the coordinators of a rescue effort might want to
monitor conditions in a hard-to-reach area. The idea is that a large collection of these
wireless devices could be dropped into such an area from an airplane and then configured
into a functioning network.

Note that we’re talking about (a) relatively inexpensive devices that are (b) being dropped
from an airplane into (c) dangerous territory; and for the combination of reasons (a), (b),
and (c), it becomes necessary to include provisions for dealing with the failure of a reasonable
number of the nodes.

We’d like it to be the case that if one of the devices v detects that it is in danger of
failing, it should transmit a representation of its current state to some other device in the
network. Each device has a limited transmitting range – say it can communicate with other
devices that lie within d meters of it. Moreover, since we don’t want it to try transmitting
its state to a device that has already failed, we should include some redundancy: A device
v should have a set of k other devices that it can potentially contact, each within d meters
of it. We’ll call this a back-up set for device v.

1. Suppose you’re given a set of n wireless devices, with positions represented by an (x, y)
coordinate pair for each. Design an algorithm that determines whether it is possible to
choose a back-up set for each device (i.e., k other devices, each within d meters), with
the further property that, for some parameter b, no device appears in the back-up set of
more than b other devices. The algorithm should output the back-up sets themselves,
provided they can be found.

2. The idea that, for each pair of devices v and w, there’s a strict dichotomy between
being “in range” or “out of range” is a simplified abstraction. More accurately, there’s
a power decay function f(·) that specifies, for a pair of devices at distance δ, the signal
strength f(δ) that they’ll be able to achieve on their wireless connection. (We’ll assume
that f(δ) decreases with increasing δ.)
We might want to build this into our notion of back-up sets as follows: among the k
devices in the back-up set of v, there should be at least one that can be reached with
very high signal strength, at least one other that can be reached with moderately high
signal strength, and so forth. More concretely, we have values p1 ≥ p2 ≥ · · · ≥ pk, so
that if the back-up set for v consists of devices at distances d1 ≤ d2 ≤ · · · ≤ dk, then
we should have f(dj) ≥ pj for each j.
Give an algorithm that determines whether it is possible to choose a back-up set for
each device subject to this more detailed condition, still requiring that no device should
appear in the back-up set of more than b other devices. Again, the algorithm should
output the back-up sets themselves, provided they can be found.

2

34.1.3 Minimum Flow
[10 Points]

Give a polynomial-time algorithm for the following minimization analogue of the Maximum-
Flow Problem. You are given a directed graph G = (V, E), with a source s ∈ V and sink
t ∈ V , and numbers (capacities) ℓ(v, w) for each edge (v, w) ∈ E. We define a flow f , and
the value of a flow, as usual, requiring that all nodes except s and t satisfy flow conserva-
tion. However, the given numbers are lower bounds on edge flow – that is, they require that
f(v, w) ≥ ℓ(v, w) for every edge (v, w) ∈ E, and there is no upper bound on flow values on
edges.

1. Give a polynomial-time algorithm that finds a feasible flow of minimum possible values.

2. Prove an analogue of the Max-Flow Min-Cut Theorem for this problem (i.e., does
min-flow = max-cut?).

34.1.4 Prove infeasibility.
You are trying to solve a circulation problem, but it is not feasible. The problem has
demands, but no capacity limits on the edges. More formally, there is a graph G = (V, E),
and demands dv for each node v (satisfying ∑

v∈V dv = 0), and the problem is to decide if
there is a flow f such that f(e) ≥ 0 and f in(v) − f out(v) = dv for all nodes v ∈ V . Note
that this problem can be solved via the circulation algorithm from Section 7.7 by setting
ce = +∞ for all edges e ∈ E. (Alternately, it is enough to set ce to be an extremely large
number for each edge – say, larger than the total of all positive demands dv in the graph.)

You want to fix up the graph to make the problem feasible, so it would be very useful to
know why the problem is not feasible as it stands now. On a closer look, you see that there
is a subset U of nodes such that there is no edge into U , and yet ∑

v∈U dv > 0. You quickly
realize that the existence of such a set immediately implies that the flow cannot exist: The
set U has a positive total demand, and so needs incoming flow, and yet U has no edges into
it. In trying to evaluate how far the problem is from being solvable, you wonder how big the
demand of a set with no incoming edges can be.

Give a polynomial-time algorithm to find a subset S ⊂ V of nodes such that there is no
edge into S and for which ∑

v∈S dv is as large as possible subject to this condition.

34.1.5 Cellphones and services.
Consider an assignment problem where we have a set of n stations that can provide service,
and there is a set of k requests for service. Say, for example, that the stations are cell towers
and the requests are cell phones. Each request can be served by a given set of stations. The
problem so far can be represented by a bipartite graph G: one side is the stations, the other
the customers, and there is an edge (x, y) between customer x and station y if customer x
can be served from station y. Assume that each station can serve at most one customer.
Using a max-flow computation, we can decide whether or not all customers can be served, or

3

can get an assignment of a subset of customers to stations maximizing the number of served
customers.

Here we consider a version of the problem with an addition complication: Each customer
offers a different amount of money for the service. Let U be the set of customers, and assume
that customer x ∈ U is willing to pay vx ≥ 0 for being served. Now the goal is to find a
subset X ⊂ U maximizing ∑

x∈X vx such that there is an assignment of the customers in X
to stations.

Consider the following greedy approach. We process customers in order of decreasing
value (breaking ties arbitrarily). When considering customer x the algorithm will either
“promise” service to x or reject x in the following greedy fashion. Let X be the set of
customers that so far have been promised service. We add x to the set X if and only if there
is a way to assign X∪{x} to servers, and we reject x otherwise. Note that rejected customers
will not be considered later. (This is viewed as an advantage: If we need to reject a high-
paying customer, at least we can tell him/her early.) However, we do not assign accepting
customers to servers in a greedy fashion: we only fix the assignment after the set of accepted
customers is fixed. Does this greedy approach produce an optimal set of customers? Prove
that it does, or provide a counterexample.

34.1.6 Follow the stars
[20 Points]

Some friends of yours have grown tired of the game “Six Degrees of Kevin Bacon” (after
all, they ask, isn’t it just breadth-first search?) and decide to invent a game with a little
more punch, algorithmically speaking. Here’s how it works.

You start with a set X of n actresses and a set Y of n actors, and two players P0 and
P1. Player P0 names an actress x1 ∈ X, player P1 names an actor y1 who has appeared
in a movie with x1, player P0 names an actress x2 who has appeared in a movie with y1,
and so on. Thus, P0 and P1 collectively generate a sequence x1, y1, x2, y2, . . . such that each
actor/actress in the sequence has costarred with the actress/actor immediately preceding.
A player Pi (i = 0, 1) loses when it is Pi’s turn to move, and he/she cannot name a member
of his/her set who hasn’t been named before.

Suppose you are given a specific pair of such sets X and Y , with complete information on
who has appeared in a movie with whom. A strategy for Pi, in our setting, is an algorithm that
takes a current sequence x1, y1, x2, y2, . . . and generates a legal next move for Pi (assuming
it’s Pi’s turn to move). Give a polynomial-time algorithm that decides which of the two
players can force a win, in a particular instance of this game.

34.1.7 Flooding
[10 Points]

Network flow issues come up in dealing with natural disasters and other crises, since
major unexpected events often require the movement and evacuation of large numbers of
people in a short amount of time.

4

Consider the following scenario. Due to large-scale flooding in a region, paramedics have
identified a set of n injured people distributed across the region who need to be rushed to
hospitals. There are k hospitals in the region, and each of the n people needs to be brought
to a hospital that is within a half-hour’s driving time of their current location (so different
people will have different options for hospitals, depending on where they are right now).

At the same time, one doesn’t want to overload any one of the hospitals by sending
too many patients its way. The paramedics are in touch by cell phone, and they want to
collectively work out whether they can choose a hospital for each of the injured people in
such a way that the load on the hospitals is balanced: Each hospital receives at most ⌈n/k⌉
people.

Give a polynomial-time algorithm that takes the given information about the people’s
locations and determines whether this is possible.

34.1.8 Capacitation, yeh, yeh, yeh
Suppose you are given a directed graph G = (V, E), with a positive integer capacity ce on
each edge e, a designated source s ∈ V , and a designated sink t ∈ V . You are also given a
maximum s-t flow in G, defined by a flow value fe on each edge e. The flow {fe} is acyclic:
There is no cycle in G on which all edges carry positive flow.

Now suppose we pick a specific edge e∗ ∈ E and reduce its capacity by 1 unit. Show how
to find a maximum flow in the resulting capacitated graph in time O(m + n), where m is
the number of edges in G and n is the number of nodes.

34.1.9 Fast Friends
[20 Points]

Your friends have written a very fast piece of maximum-flow code based on repeatedly
finding augmenting paths as in the course lecture notes. However, after you’ve looked at
a bit of output from it, you realize that it’s not always finding a flow of maximum value.
The bug turns out to be pretty easy to find; your friends hadn’t really gotten into the whole
backward-edge thing when writing the code, and so their implementation builds a variant of
the residual graph that only includes the forwards edges. In other words, it searches for s-t
paths in a graph G̃f consisting only of edges of e for which f(e) < ce, and it terminates when
there is no augmenting path consisting entirely of such edges. We’ll call this the Forward-
Edge-Only Algorithm. (Note that we do not try ot prescribe how this algorithms chooses its
forward-edge paths; it may choose them in any fashion it wants, provided that it terminates
only when there are no forward-edge paths.)

It’s hard to convince your friends they need to reimplement the code. In addition to its
blazing speed, they claim, in fact, that it never returns a flow whose value is less than a
fixed fraction of optimal. Do you believe this? The crux of their claim can be made precise
in the following statement.

“There is an absolute constant b > 1 (independent of the particular input flow network),
so that on every instance of the Maximum-Flow Problem, the Forward-Edge-Only Algorithm

5

is guaranteed to find a flow of value at least 1/b times the maximum-flow value (regardless
of how it chooses its forward-edge paths).

Decide whether you think this statement is true or false, and give a proof of either the
statement or its negation.

34.1.10 Even More Capacitation
[10 Points]

In a standard s− t Maximum-Flow Problem, we assume edges have capacities, and there
is no limit on how much flow is allowed to pass through a node. In this problem, we consider
the variant of the Maximum-Flow and Minimum-Cut problems with node capacities.

Let G = (V, E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative node
capacities {cv ≥ 0} for each v ∈ V . Given a flow f in this graph, the flow through a node v
is defined as f in(v). We say that a flow is feasible if it satisfies the usual flow-conservation
constraints and the node-capacity constraints: f in(v) ≤ cv for all nodes.

Give a polynomial-time algorithm to find an s-t maximum flow in such a node-capacitated
network. Define an s-t cut for node-capacitated networks, and show that the analogue of
the Max-Flow Min-Cut Theorem holds true.

34.1.11 Matrices
[10 Points]

Let M be an n × n matrix with each entry equal to either 0 or 1. Let mij denote the
entry in row i and column j. A diagonal entry is one of the form mii for some i.

Swapping rows i and j of the matrix M denotes the following action: we swap the
values of mik and mjk, for k = 1, . . . , n. Swapping two columns is defined analogously.

We say that M is rearrangeable if it is possible to swap some of the pairs of rows and
some of the pairs of columns (in nay sequence) so that after all the swapping, all the diagonal
entries of M are equal to 1.

1. [2 Points] Give an example of a matrix M that is not rearrangeable, but for which at
least one entry in each row and each column is equal to 1.

2. [8 Points] Give a polynomial-time algorithm that determines whether a matrix M
with 0-1 entries is rearrangeable.

34.1.12 Unique Cut
[10 Points]

Let G = (V, E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative
edge capacities {ce}. Give a polynomial-time algorithm to decide whether G has a unique
minimum s-t cut (i.e., an s-t of capacity strictly less than that of all other s-t cuts).

6

34.1.13 Transitivity
[10 Points]

Given a graph G = (V, E), and a natural number k, we can define a relation G,k−−→ on
pairs of vertices of G as follows. If x, y ∈ V , we say that x

G,k−−→ y if there exist k mutually
edge-disjoint paths from x to y in G.

Is it true that for every G and every k ≥ 0, the relation G,k−−→ is transitive? That is, is
it always the case that if x

G,k−−→ y and y
G,k−−→ z, then we have x

G,k−−→ z? Give a proof or a
counterexample.

34.1.14 Census Rounding
[20 Points]

You are consulting for an environmental statistics firm. They collect statistics and publish
the collected data in a book. The statistics are about populations of different regions in the
world and are recorded in multiples of one million. Examples of such statistics would look
like the following table.

Country A B C Total
grown-up men 11.998 9.083 2.919 24.000
grown-up women 12.983 10.872 3.145 27.000
children 1.019 2.045 0.936 4.000
total 26.000 22.000 7.000 55.000

We will assume here for simplicity that our data is such that all row and column sums are
integers. The Census Rounding Problem is to round all data to integers without changing
any row or column sum. Each fractional number can be rounded either up or down. For
example, a good rounding for our table data would be as follows.

Country A B C Total
grown-up men 11.000 10.000 3.000 24.000
grown-up women 13.000 10.000 4.000 27.000
children 1.000 2.000 0.000 4.000
total 26.000 22.000 7.000 55.000

1. [5 Points] Consider first the special case when all data are between 0 and 1. So you
have a matrix of fractional numbers between 0 and 1, and your problem is to round
each fraction that is between 0 and 1 to either 0 or 1 without changing the row or
column sums. Use a flow computation to check if the desired rounding is possible.

2. [5 Points] Consider the Census Rounding Problem as defined above, where row and
column sums are integers, and you want to round each fractional number α to either
⌊α⌋ or ⌈α⌉. Use a flow computation to check if the desired rounding is possible.

3. [10 Points] Prove that the rounding we are looking for in (a) and (b) always exists.

7

34.1.15 Edge Connectivity
[20 Points]

The edge connectivity of an undirected graph is the minimum number k of edges that
must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1,
and the edge connectivity of a cyclic chain of vertices is 2. Show how the edge connectivity
of an undirected graph G = (V, E) can be determined by running a maximum-flow algorithm
on at most |V | flow networks, each having O(V) vertices and O(E) edges.

34.1.16 Maximum Flow By Scaling
[20 Points]

Let G = (V, E) be a flow network with source s, sink t, and an integer capacity c(u, v)
on each edge (u, v) ∈ E. Let C = max(u,v)∈Ec(u, v).

1. [2 Points] Argue that a minimum cut of G has capacity at most C|E|.

2. [5 Points] For a given number K, show that an augmenting path of capacity at least
K can be found in O(E) time, if such a path exists.
The following modification of Ford-Fulkerson-Method can be used to compute a
maximum flow in G.

Max-Flow-By-Scaling(G, s, t)
1 C ← max(u,v)∈Ec(u, v)
2 initialize flow f to 0
3 K ← 2⌊lg C⌋

4 while K ≥ 1 do {
5 while (there exists an augmenting path p of

capacity at least K) do {
6 augment flow f along p

}
7 K ← K/2

}

8 return f

3. [3 Points] Argue that Max-Flow-By-Scaling returns a maximum flow.

4. [4 Points] Show that the capacity of a minimum cut of the residual graph Gf is at
most 2K|E| each time line 4 is executed.

5. [4 Points] Argue that the inner while loop of lines 5-6 is executed O(E) times for
each value of K.

8

6. [2 Points] Conclude that Max-Flow-By-Scaling can be implemented so that it
runs in O(E2 lg C) time.

34.1.17 Perfect Matching
[20 Points]

1. [10 Points] A perfect matching is a matching in which every vertex is matched. Let
G = (V, E) be an undirected bipartite graph with vertex partition V = L ∪ R, where
|L| = |R|. For any X ⊆ V , define the neighborhood of X as

N(X) =
{
y ∈ V

∣∣∣ (x, y) ∈ E for some x ∈ X
}

,

that is, the set of vertices adjacent to some member of X. Prove Hall’s theorem: there
exists a perfect matching in G if and only if |A| ≤ |N(A)| for every subset A ⊆ L.

2. [10 Points] We say that a bipartite graph G = (V, E), where V = L∪R, is d-regular if
every vertex v ∈ V has degree exactly d. Every d-regular bipartite graph has |L| = |R|.
Prove that every d-regular bipartite graph has a matching of cardinality |L| by arguing
that a minimum cut of the corresponding flow network has capacity |L|.

34.1.18 Number of augmenting paths
1. [10 Points] Show that a maximum flow in a network G = (V, E) can always be found

by a sequence of at most |E| augmenting paths. [Hint: Determine the paths after
finding the maximum flow.]

2. [10 Points] Suppose that a flow network G = (V, E) has symmetric edges, that is,
(u, v) ∈ E if and only (v, u) ∈ E. Show that the Edmonds-Karp algorithm terminates
after at most |V ||E|/4 iterations. [Hint: For any edge (u,v), consider how both δ(s, u)
and δ(v, t) change between times at which (u, v) is critical.]

34.1.19 Minimum Cut Festival
[20 Points]

1. Given a multigraph G(V, E), show that an edge can be selected uniform at random
from E in time O(n), given access to a source of random bits.

2. For any α ≥ 1, define an α approximate cut in a multigraph G as any cut whose
cardinality is within a multiplicative factor α of the cardinality of the min-cut in G.
Determine the probability that a single iteration of the randomized algorithm for cuts
will produce as output some α-approximate cut in G.

9

3. Using the analysis of the randomized min-cut algorithm, show that the number of
distinct min-cuts in a multigraph G cannot exceed n(n− 1)/2, where n is the number
of vertices in G.

4. Formulate and prove a similar result of the number of α -approximate cuts in a multi-
graph G.

34.1.20 Independence Matrix
[10 Points]

Consider a 0− 1 matrix H with n1 rows and n2 columns. We refer to a row or a column
of the matrix H as a line. We say that a set of 1’s in the matrix H is independent if no two
of them appear in the same line. We also say that a set of lines in the matrix is a cover of H
if they include (i.e., “cover”) all the 1’s in the matrix. Using the max-flow min-cut theorem
on an appropriately defined network, show that the maximum number of independent 1’s
equals the minimum number of lines in the cover.

34.1.21 Scalar Flow Product
[10 Points]

Let f be a flow in a network, and let α be a real number. The scalar flow product,
denoted by αf , is a function from V × V to IR defined by

(αf)(u, v) = α · f(u, v).

Prove that the flows in a network form a convex set. That is, show that if f1 and f2 are
flows, then so is αf1 + (1− α)f2 for all α in the range 0 ≤ α ≤ 1.

34.1.22 Go to school!
Professor Adam has two children who, unfortunately, dislike each other. The problem is
so severe that not only they refuse to walk to school together, but in fact each one refuses
to walk on any block that the other child has stepped on that day. The children have no
problem with their paths crossing at a corner. Fortunately both the professor’s house and
the school are on corners, but beyond that he is not sure if it is going to be possible to send
both of his children to the same school. The professor has a map of his town. Show how
to formulate the problem of determining if both his children can go to the same school as a
maximum-flow problem.

34.1.23 The Hopcroft-Karp Bipartite Matching Algorithm
[20 Points]

In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for finding a
maximum matching in a bipartite graph. The algorithm runs in O(

√
V E) time. Given an

10

undirected, bipartite graph G = (V, E), where V = L ∪ R and all edges have exactly one
endpoint in L, let M be a matching in G. We say that a simple path P in G is an augmenting
path with respect to M if it starts at an unmatched vertex in L, ends at an unmatched vertex
in R, and its edges belong alternatively to M and E−M . (This definition of an augmenting
path is related to, but different from, an augmenting path in a flow network.) In this problem,
we treat a path as a sequence of edges, rather than as a sequence of vertices. A shortest
augmenting path with respect to a matching M is an augmenting path with a minimum
number of edges.

Given two sets A and B, the symmetric difference A⊕B is defined as (A−B)∪ (B−A),
that is, the elements that are in exactly one of the two sets.

1. [4 Points] Show that if M is a matching and P is an augmenting path with respect to
M , then the symmetric difference M ⊕P is a matching and |M ⊕P | = |M |+ 1. Show
that if P1, P2, ..., Pk are vertex-disjoint augmenting paths with respect to M , then the
symmetric difference M ⊕ (P1 ∪ P2 ∪ ... ∪ Pk) is a matching with cardinality |M |+ k.
The general structure of our algorithm is the following:

Hopcroft-Karp(G)
1 M ← ∅
2 repeat
3 let P← {P1, P2, ..., Pk} be a maximum set of

vertex-disjoint shortest augmenting paths
with respect to M

4 M ←M ⊕ (P1 ∪ P2 ∪ . . . ∪ Pk)
5 until P = ∅

6 return M

The remainder of this problem asks you to analyze the number of iterations in the
algorithm (that is, the number of iterations in the repeat loop) and to describe an
implementation of line 3.

2. [4 Points] Given two matchings M and M∗ in G, show that every vertex in the graph
G′ = (V, M ⊕M∗) has degree at most 2. Conclude that G′ is a disjoint union of simple
paths or cycles. Argue that edges in each such simple path or cycle belong alternatively
to M or M∗. Prove that if |M | ≤ |M∗|, then M ⊕M∗ contains at least |M∗| − |M |
vertex-disjoint augmenting paths with respect to M .
Let l be the length of a shortest augmenting path with respect to a matching M , and
let P1, P2, ..., Pk be a maximum set of vertex-disjoint augmenting paths of length l
with respect to M . Let M ′ = M ⊕ (P1∪P2∪ ...∪Pk), and suppose that P is a shortest
augmenting path with respect to M ′.

11

3. [2 Points] Show that if P is vertex-disjoint from P1, P2, ..., Pk, then P has more than
l edges.

4. [2 Points] Now suppose P is not vertex-disjoint from P1, P2, ..., Pk. Let A be the set
of edges (M ⊕M ′)⊕P . Show that A = (P1∪P2∪ ...∪Pk)⊕P and that |A| ≥ (k + 1)l.
Conclude that P has more than l edges.

5. [2 Points] Prove that if a shortest augmenting path for M has length l, the size of
the maximum matching is at most |M |+ |V |/l.

6. [2 Points] Show that the number of repeat loop iterations in the algorithm is at most
2
√

V . [Hint: By how much can M grow after iteration number
√

V ?]

7. [4 Points] Give an algorithm that runs in O(E) time to find a maximum set of vertex-
disjoint shortest augmenting paths P1, P2, ..., Pk for a given matching M . Conclude
that the total running time of Hopcroft-Karp is O(

√
V E).

34.2 Min Cost Flow

34.2.1 Streaming TV.
[20 Points]

You are given a directed graph G, a source vertex s (i.e., a server in the internet), and
a set T of vertices (i.e., consumers computers). We would like to broadcast as many TV
programs from the server to the customers simultaneously. A single broadcast is a path from
the server to one of the customers. The constraint is that no edge or vertex (except from
the server) can have two streams going through them.

(A) [10 Points] Provide a polynomial time algorithm that computes the largest number of
paths that can be streamed from the server.

(B) [10 Points] Let k be the number of paths computed in (A). Present an algorithm, that
in polynomial time, computes a set of k such paths (one end point in the server, the
other endpoint is in T) with minimum number of edges.

34.2.2 Transportation Problem.
[20 Points]

Let G be a digraph with n vertices and m edges.
In the transportation problem, you are given a set X of x vertices in a graph G, for every

vertex v ∈ X there is a quantity qx > 0 of material available at v. Similarly, there is a set of
vertices Y , with associated capacities cy with each vertex y ∈ Y . Furthermore, every edge
of G has an associated distance with it.

12

The work involved in transporting α units of material on an edge e of length ℓ is α ∗ ℓ.
The problem is to move all the material available in X to the vertices of Y , without violating
the capacity constraints of the vertices, while minimizing the overall work involved.

Provide a polynomial time algorithm for this problem. How fast is your algorithm?

34.2.3 Edge Connectivity
[20 Points]

The edge connectivity of an undirected graph is the minimum number k of edges that
must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1,
and the edge connectivity of a cyclic chain of vertices is 2. Show how the edge connectivity
of an undirected graph G = (V, E) can be determined by running a maximum-flow algorithm
on at most |V | flow networks, each having O(V) vertices and O(E) edges.

34.2.4 Perfect Matching
[20 Points]

1. [10 Points] A perfect matching is a matching in which every vertex is matched. Let
G = (V, E) be an undirected bipartite graph with vertex partition V = L ∪ R, where
|L| = |R|. For any X ⊆ V , define the neighborhood of X as

N(X) =
{
y ∈ V

∣∣∣ (x, y) ∈ E for some x ∈ X
}

,

that is, the set of vertices adjacent to some member of X. Prove Hall’s theorem: there
exists a perfect matching in G if and only if |A| ≤ |N(A)| for every subset A ⊆ L.

2. [10 Points] We say that a bipartite graph G = (V, E), where V = L∪R, is d-regular if
every vertex v ∈ V has degree exactly d. Every d-regular bipartite graph has |L| = |R|.
Prove that every d-regular bipartite graph has a matching of cardinality |L| by arguing
that a minimum cut of the corresponding flow network has capacity |L|.

34.2.5 Max flow by augmenting
1. [10 Points] Show that a maximum flow in a network G = (V, E) can always be found

by a sequence of at most |E| augmenting paths. [Hint: Determine the paths after
finding the maximum flow.]

2. [10 Points] Suppose that a flow network G = (V, E) has symmetric edges, that is,
(u, v) ∈ E if and only (v, u) ∈ E. Show that the Edmonds-Karp algorithm terminates
after at most |V ||E|/4 iterations. [Hint: For any edge (u, v), consider how both δ(s, u)
and δ(v, t) change between times at which (u, v) is critical.]

13

34.2.6 And now for something completely different.
[10 Points]

Prove that the following problems are NPC or provide a polynomial time algorithm to
solve them:

1. Given a directly graph G, and two vertices u, v ∈ V (G), find the maximum number of
edge disjoint paths between u and v.

2. Given a directly graph G, and two vertices u, v ∈ V (G), find the maximum number of
vertex disjoint paths between u and v (the paths are disjoint in their vertices, except
of course, for the vertices u and v).

34.2.7 Minimum Cut
[10 Points]

Present a deterministic algorithm, such that given an undirected graph G, it computes
the minimum cut in G. How fast is your algorithm? How does your algorithm compares
with the randomized algorithm shown in class?

14

	34 Exercises - Network Flow
	34.1 Network Flow
	34.1.1 The good, the bad, and the middle.
	34.1.2 Ad hoc networks
	34.1.3 Minimum Flow
	34.1.4 Prove infeasibility.
	34.1.5 Cellphones and services.
	34.1.6 Follow the stars
	34.1.7 Flooding
	34.1.8 Capacitation, yeh, yeh, yeh
	34.1.9 Fast Friends
	34.1.10 Even More Capacitation
	34.1.11 Matrices
	34.1.12 Unique Cut
	34.1.13 Transitivity
	34.1.14 Census Rounding
	34.1.15 Edge Connectivity
	34.1.16 Maximum Flow By Scaling
	34.1.17 Perfect Matching
	34.1.18 Number of augmenting paths
	34.1.19 Minimum Cut Festival
	34.1.20 Independence Matrix
	34.1.21 Scalar Flow Product
	34.1.22 Go to school!
	34.1.23 The Hopcroft-Karp Bipartite Matching Algorithm

	34.2 Min Cost Flow
	34.2.1 Streaming TV.
	34.2.2 Transportation Problem.
	34.2.3 Edge Connectivity
	34.2.4 Perfect Matching
	34.2.5 Max flow by augmenting
	34.2.6 And now for something completely different.
	34.2.7 Minimum Cut

