
CS 573: Algorithms, Fall 2012
Homework 3, due Monday, October 29, 23:59:59, 2012

Version 1.1

Name:
Net ID:

Neatly print your name(s), NetID(s). If you are off campus, please submit the homework on
moodle, otherwise submit the homework in SC 3306 (or sliding it under the door). Please
solve each problem on a separate page.

“Napoleon has not been conquered by man. He was greater than all of us. But god punished
him because he relied on his own intelligence alone, until that prodigious instrument was
strained to breaking point. Everything breaks in the end.”

– Carl XIV Johan, King of Sweden.

Required Problems

1. Independence Matrix
[30 Points]
(A) [15 Points] Consider a 0 − 1 matrix H with n1 rows and n2 columns. We refer

to a row or a column of the matrix H as a line. We say that a set of 1’s in the
matrix H is independent if no two of them appear in the same line. We also say
that a set of lines in the matrix is a cover of H if they include (i.e., “cover”) all
the 1’s in the matrix. Using the max-flow min-cut theorem on an appropriately
defined network, show that the maximum number of independent 1’s equals the
minimum number of lines in the cover.

(B) [15 Points] Let M be an n×n matrix with each entry equal to either 0 or 1. Let
mij denote the entry in row i and column j. A diagonal entry is one of the form
mii for some i.
Swapping rows i and j of the matrix M denotes the following action: we swap
the values of mik and mjk, for k = 1, . . . , n. Swapping two columns is defined
analogously.
We say that M is rearrangeable if it is possible to swap some of the pairs of rows
and some of the pairs of columns (in nay sequence) so that after all the swapping,
all the diagonal entries of M are equal to 1.

(B.I) [5 Points] Give an example of a matrix M that is not rearrangeable, but
for which at least one entry in each row and each column is equal to 1.

(B.II) [10 Points] Give a polynomial-time algorithm that determines whether
a matrix M with 0-1 entries is rearrangeable.

1

2. Unique Cut
[30 Points]
(A) [12 Points] Let G = (V, E) be a directed graph, with source s ∈ V , sink t ∈ V ,

and nonnegative edge capacities {ce}. Give a polynomial-time algorithm to decide
whether G has a unique minimum s-t cut (i.e., an s-t of capacity strictly less than
that of all other s-t cuts).

(B) [18 Points] The good, the bad, and the middle.
Suppose you’re looking at a flow network G with source s and sink t, and you want
to be able to express something like the following intuitive notion: Some nodes are
clearly on the “source side” of the main bottlenecks; some nodes are clearly on the
“sink side” of the main bottlenecks; and some nodes are in the middle. However,
G can have many minimum cuts, so we have to be careful in how we try making
this idea precise.
Here’s one way to divide the nodes of G into three categories of this sort.
• We say a node v is upstream if, for all minimum s-t cuts (A, B), we have

v ∈ A – that is, v lies on the source side of every minimum cut.
• We say a node v is downstream if, for all minimum s-t cuts (A, B), we have

v ∈ B – that is, v lies on the sink side of every minimum cut.
• We say a node v is central if it is neither upstream nor downstream; there

is at least one minimum s-t cut (A, B) for which v ∈ A, and at least one
minimum s-t cut (A′, B′) for which v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of its nodes as be-
ing upstream, downstream, or central. The running time of your algorithm should
be within a constant factor of the time required to compute a single maximum
flow.3. Maximum Flow By Scaling

[40 Points]
Let G = (V, E) be a flow network with source s, sink t, and an integer capacity c(u, v)
on each edge (u, v) ∈ E. Let C = max(u,v)∈Ec(u, v).
(A) [4 Points] Argue that a minimum cut of G has capacity at most C|E|.
(B) [10 Points] For a given number K, show that an augmenting path of capacity at

least K can be found in O(E) time, if such a path exists.
(C) [6 Points] The following modification of Ford-Fulkerson-Method can be

used to compute a maximum flow in G.

2

MaxFlowByScaling(G, s, t)
1 C ← max(u,v)∈Ec(u, v)
2 initialize flow f to 0
3 K ← 2⌊lg C⌋

4 while K ≥ 1 do {
5 while (there exists an augmenting path p of

capacity at least K) do {
6 augment flow f along p

}
7 K ← K/2

}

8 return f

Argue that MaxFlowByScaling returns a maximum flow.
(D) [8 Points] Show that the capacity of a minimum cut of the residual graph Gf is

at most 2K|E| each time line 4 is executed.
(E) [8 Points] Argue that the inner while loop of lines 5-6 is executed O(|E|) times

for each value of K.
(F) [4 Points] Conclude that MaxFlowByScaling can be implemented so that it

runs in O(E2 lg C) time.

3

