
Chapter 6

Approximation algorithms
By Sariel Har-Peled, December 7, 2009¬ Version: 0.2

6.1 Greedy algorithms and approximation algorithms
A natural tendency in solving algorithmic problems is to locally do whats seems to be the right
thing. This is usually referred to as greedy algorithms. The problem is that usually these kind of
algorithms do not really work. For example, consider the following optimization version of Vertex
Cover:

Problem: VertexCoverMin

Instance: A graph G, and integer k.
Output: Return the smallest subset S ⊆ V(G), s.t. S touches all the
edges of G.

For this problem, the greedy algorithm will always take the vertex with the highest degree (i.e.,
the one covering the largest number of edges), add it to the cover set, remove it from the graph,
and repeat. We will refer to this algorithm as GreedyVertexCover.

Figure 6.1: Example.

It is not too hard to see that this algorithm does not output the op-
timal vertex-cover. Indeed, consider the graph depicted on the right.
Clearly, the optimal solution is the black vertices, but the greedy algo-
rithm would pick the four white vertices.

This of course still leaves open the possibility that, while we do not
get the optimal vertex cover, what we get is a vertex cover which is
“relatively good” (or “good enough”).

Definition 6.1.1 A minimization problem is an optimization problem,
where we look for a valid solution that minimizes a certain target func-
tion.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Example 6.1.2 In the VertexCoverMin problem the (minimization) target function is the size of
the cover. Formally Opt(G) = minS⊆V(G),S cover of G |S |.

The VertexCover(G) is just the set S realizing this minimum.

Definition 6.1.3 Let Opt(G) denote the value of the target function for the optimal solution.

Intuitively, a vertex-cover of size “close” to the optimal solution would be considered to be
good.

Definition 6.1.4 Algorithm Alg for a minimization problem Min achieves an approximation factor
α ≥ 1 if for all inputs G, we have:

Alg(G)
Opt(G)

≤ α.

We will refer to Alg as an α-approximation algorithm for Min.

As a concrete example, an algorithm is a 2-approximation
for VertexCoverMin, if it outputs a vertex-cover which is at
most twice the size of the optimal solution for vertex cover.

So, how good (or bad) is the GreedyVertexCover algo-
rithm described above? Well, the graph in Figure 6.1 shows
that the approximation factor of GreedyVertexCover is at least
4/3.

It turns out that GreedyVertexCover performance is con-
siderably worse. To this end, consider the following bipartite
graph: Gn = (L ∪ R, E), where L is a set of n vertices. Next,
for i = 2, . . . , n, we add a set Ri of bn/ic vertices, to R, each one
of them of degree i, such that all of them (i.e., all vertices of
degree i at L) are connected to distinct vertices in R. The ex-
ecution of GreedyVertexCover on such a graph is shown on
the right.

Clearly, in Gn all the vertices in L have degree at most n−1,
since they are connected to (at most) one vertex of Ri, for i =

2, . . . , n. On the other hand, there is a vertex of degree n at R
(i.e., the single vertex of Rn). Thus, GreedyVertexCover will first remove this vertex. We claim,
that GreedyVertexCover will remove all the vertices of R2, . . . ,Rn and put them into the vertex-
cover. To see that, observe that if R2, . . . ,Ri are still active, then all the nodes of Ri have degree
i, all the vertices of L have degree at most i − 1, and all the vertices of R2, . . . ,Ri−1 have degree
strictly smaller than i. As such, the greedy algorithms will use the vertices of Ri. Easy induction
now implies that all the vertices of R are going to be picked by GreedyVertexCover. This implies
the following lemma.

Lemma 6.1.5 The algorithm GreedyVertexCover is Ω(log n) approximation to the optimal solu-
tion to VertexCoverMin.

Proof: Consider the graph Gn above. The optimal solution is to pick all the vertices of L to the
vertex cover, which results in a cover of size n. On the other hand, the greedy algorithm picks the

2

set R. We have that

|R| =
n∑

i=2

|Ri| =

n∑
i=2

⌊n
i

⌋
≥

n∑
i=2

(n
i
− 1

)
≥ n

n∑
i=1

1
i
− 2n = n(Hn − 2) .

Here, Hn =
∑n

i=1 1/i = lg n + Θ(1) is the nth harmonic number. As such, the approximation ratio

for GreedyVertexCover is ≥
|R|
|L|

=
n(Hn − 2)

n
= Ω(log n).

Theorem 6.1.6 The greedy algorithm for VertexCover achieves Θ(log n) approximation, where n
is the number of vertices in the graph. Its running time is O(mn2).

Proof: The lower bound follows from Lemma 6.1.5. The upper bound follows from the analysis
of the greedy of Set Cover, which will be done shortly.

As for the running time, each iteration of the algorithm takes O(mn) time, and there are at most
n iterations.

6.1.1 Alternative algorithm – two for the price of one
One can still do much better than the greedy algorithm in this case. In particular, let ApproxVer-
texCover be the algorithm that chooses an edge from G, add both endpoints to the vertex cover,
and removes the two vertices (and all the edges adjacent to these two vertices) from G. This pro-
cess is repeated till G has no edges. Clearly, the resulting set of vertices is a vertex-cover, since the
algorithm removes an edge only if it is being covered by the generated cover.

Theorem 6.1.7 ApproxVertexCover is a 2-approximation algorithm for VertexCoverMin.

Proof: Every edge picked by the algorithm contains at least one vertex of the optimal solution. As
such, the cover generated is at most twice larger than the optimal.

6.2 Traveling Salesman Person
We remind the reader that the optimization variant of the TSP problem is the following.

Problem: TSP-Min

Instance: G = (V, E) a complete graph, and ω(e) a cost function
defined over the edges of G.
Output: The cheapest tour that visits all the vertices of G exactly
once.

Theorem 6.2.1 TSP-Min can not be approximated within any factor unless NP = P.

Proof: Consider the reduction from Hamiltonian Cycle into TSP. Given a graph G, which is
the input for the Hamiltonian cycle, we transform it into an instance of TSP-Min. Specifically, we
set the weight of every edge to 1 if it was present in the instance of the Hamiltonian cycle, and 2
otherwise. In the resulting complete graph, if there is a tour price n then there is a Hamiltonian

3

cycle in the original graph. If on the other hand, there was no cycle in G then the cheapest TSP is
of price n + 1.

Instead of 2, let us assign the missing edges in H a weight of cn, for c an arbitrary number. Let
H denote the resulting graph. Clearly, if G does not contain any Hamiltonian cycle in the original
graph, then the price of the TSP-Min in H is at least cn + 1.

Note, that the prices of tours of H are either (i) equal to n if there is a Hamiltonian cycle in
G, or (ii) larger than cn + 1 if there is no Hamiltonian cycle in G. As such, if one can do a c-
approximation, in polynomial time, to TSP-Min, then using it on H would yield a tour of price
≤ cn if a tour of price n exists. But a tour of price ≤ cn exists iff G has a Hamiltonian cycle.

Namely, such an approximation algorithm would solve a NP-C problem (i.e., Hamilto-
nian Cycle) in polynomial time.

Note, that Theorem 6.2.1 implies that TSP-Min can not be approximated to within any factor.
However, once we add some assumptions to the problem, it becomes much more manageable (at
least as far as approximation).

What the above reduction did, was to take a problem and reduce it into an instance where this is
a huge gap, between the optimal solution, and the second cheapest solution. Next, we argued that
if had an approximation algorithm that has ratio better than the ratio between the two endpoints of
this empty interval, then the approximation algorithm, would in polynomial time would be able to
decide if there is an optimal solution.

6.2.1 TSP with the triangle inequality

6.2.1.1 A 2-approximation

Consider the following special case of TSP:

Problem: TSP4,-Min

Instance: G = (V, E) is a complete graph. There is also a cost function ω(·)
defined over the edges of G, that complies with the triangle inequality.
Question: The cheapest tour that visits all the vertices of G exactly once.

We remind the reader that the triangle inequality holds for ω(·) if

∀u, v,w ∈ V(G) , ω(u, v) ≤ ω(u,w) + ω(w, v) .

The triangle inequality implies that if we have a path σ in G, that starts at s and ends at t, then
ω(st) ≤ ω(σ). Namely, shortcutting, that is going directly from s to t, is always beneficial if the
triangle inequality holds (assuming that we do not have any reason to visit the other vertices of σ).

We need the following classical result:

Lemma 6.2.2 A graph G has a cycle that visits every edge of G exactly once (i.e., an Eulerian
cycle) if and only if G is connected, and all the vertices have even degree. Such a cycle can be
computed in O(n + m) time, where n and m are the number of vertices and edges of G, respectively.

4

(a) (b) (c) (d)

Figure 6.2: The TSP approximation algorithm: (a) the input, (b) the duplicated graph, (c) the
extracted Eulerian tour, and (d) the resulting shortcut path.

Our purpose is to come up with a 2-approximation algorithm for TSP4,-Min. To this end, let
Copt denote the optimal TSP tour in G. Observe that Copt is a spanning graph of G, and as such we
have that

ω
(
Copt

)
≥ weight

(
cheapest spanning graph of G

)
But the cheapest spanning graph of G, is the minimum spanning tree (MST) of G, and as such
ω
(
Copt

)
≥ ω(MST(G)). The MST can be computed in O(n log n + m) = O(n2) time, where n is the

number of vertices of G, and m =
(

n
2

)
is the number of edges (since G is the complete graph). Let

T denote the MST of G, and covert T into a tour by duplicating every edge twice. Let H denote
the new graph. We have that H is a connected graph, every vertex of H has even degree, and as
such H has an Eulerian tour (i.e., a tour that visits every edge of H exactly once).

As such, let C denote the Eulerian cycle in H. Observe that

ω(C) = ω(H) = 2ω(T) = 2ω(MS T (G)) ≤ 2ω
(
Copt

)
.

Next, we traverse C starting from any vertex v ∈ V(C). As we traverse C, we skip vertices that we
already visited, and in particular, the new tour we extract from C will visit the vertices of V(G) in
the order they first appear in C. Let π denote the new tour of G. Clearly, since we are performing
shortcutting, and the triangle inequality holds, we have that ω(π) ≤ ω(C). The resulting algorithm
is depicted in Figure 6.2.

It is easy to verify, that all the steps of our algorithm can be done in polynomial time. As such,
we have the following result.

Theorem 6.2.3 Given an instance of TSP with the triangle inequality (TSP4,-Min) (namely, a
graph G with n vertices and

(
n
2

)
edges, and a cost function ω(·) on the edges that comply with the

triangle inequality), one can compute a tour of G of length ≤ 2ω
(
Copt

)
, where Copt is the minimum

cost TSP tour of G. The running time of the algorithm is O
(
n2

)
.

5

6.2.1.2 A 3/2-approximation to TSP4,-Min

Let us revisit the concept of matchings.

Definition 6.2.4 Given a graph G = (V, E), a subset M ⊆ E is a matching if no pair of edges of
M share endpoints. A perfect matching is a matching that covers all the vertices of G. Given a
weight function w on the edges, a min-weight perfect matching, is the minimum weight matching
among all perfect matching, where

ω(M) =
∑
e∈M

ω(e) .

The following is a known result, and we will see a somewhat weaker version of it in class.

Theorem 6.2.5 Given a graph G and weights on the edges, one can compute the min-weight
perfect matching of G in polynomial time.

Definition 6.2.6 Let G be complete graph over V , with a weight function ω(·) defined over the
edges, that comply with the triangle inequality. For a subset S ⊆ V , let GS be the induced subgraph
over S . Namely, it is a complete graph over S , with the prices over the edges determined by ω(·).

Lemma 6.2.7 Let G = (V, E) be a complete graph, S a subset of the vertices of V of even size, and
ω(·) a weight function over the edges. Then, the weight of the min-weight perfect matching in GS

is ≤ ω(TSP(G))/2.

σ

πS

Proof: Let π be the cycle realizing the TSP in G. Let σ be
the cycle resulting from shortcutting π so that it uses only the
vertices of S . Clearly, ω(σ) ≤ ω(π). Now, let Me and Mo be the
sets of even and odd edges of σ respectively. Clearly, both Mo

and Me are perfect matching in GS , and

ω(Mo) + ω(Me) = ω(σ) .

We conclude, that min(w(Mo) ,w(Me)) ≤ ω(TSP(G))/2.

4

1

3
5

6

7

2

We now have a creature that has the weight of half of the
TSP, and we can compute it in polynomial time. How to use
it to approximate the TSP? The idea is that we can make the
MST of G into an Eulerian graph by being more careful. To
this end, consider the tree on the right. Clearly, it is almost
Eulerian, except for these pesky odd degree vertices. Indeed, if all the vertices of the spanning tree
had even degree, then the graph would be Eulerian (see Lemma 6.2.2).

In particular, in the depicted tree, the “problematic” vertices are 1, 4, 2, 7, since they are all the
odd degree vertices in the MST T .

Lemma 6.2.8 The number of odd degree vertices in any graph G′ is even.

6

Proof: Observe that µ =
∑

v∈V(G′) d(v) = 2|E(G′)|, where d(v) denotes the degree of v. Let U =∑
v∈V(G′),d(v) is even d(v), and observe that U is even as it is the sum of even numbers.

Thus, ignoring vertices of even degree, we have

α =
∑

v∈V,d(v) is odd

d(v) = µ − U = even number,

since µ and U are both even. Thus, the number of elements in the above sum of all odd numbers
must be even, since the total sum is even.

4

1

3
5

6

7

2

So, we have an even number of problematic vertices in
T . The idea now is to compute a minimum-weight perfect
matching M on the problematic vertices, and add the edges of
the matching to the tree. The resulting graph, for our running
example, is depicted on the right. Let H = (V, E(M) ∪ E(T))
denote this graph, which is the result of adding M to T .

We observe that H is Eulerian, as all the vertices now have even degree, and the graph is
connected. We also have

ω(H) = ω(MST(G)) + ω(M) ≤ ω(TSP(G)) + ω(TSP(G))/2 = (3/2)ω(TS P(G)),

by Lemma 6.2.7. Now, H is Eulerian, and one can compute the Euler cycle for H, shortcut it, and
get a tour of the vertices of G of weight ≤ (3/2)ω(TSP(G)).

Theorem 6.2.9 Given an instance of TSP with the triangle inequality, one can compute in poly-
nomial time, a (3/2)-approximation to the optimal TSP.

6.3 Biographical Notes
The 3/2-approximation for TSP with the triangle inequality is due to Christofides [Chr76].

Bibliography
[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. Technical Report Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976.

7

	Approximation algorithms
	Greedy algorithms and approximation algorithms
	Alternative algorithm -- two for the price of one

	Traveling Salesman Person
	TSP with the triangle inequality

	Biographical Notes

	Bibliography

