
Chapter 4

Dynamic programming
By Sariel Har-Peled, December 7, 2009¬

The events of 8 September prompted Foch to draft the later legendary signal: “My centre is giving way,
my right is in retreat, situation excellent. I attack.” It was probably never sent.

– – The first world war, John Keegan.

Version: 0.1

4.1 Basic Idea - Partition Number

6=6
6=5+1
6=4+2 6=4+1+1

6 = 3 + 3 6 = 3 + 2 + 1 6+3+1+1+1
6=2+2+2 6=2+2+1+1 6=2+1+1+1+1

6=1+1+1+1+1+1

Definition 4.1.1 For a positive integer
n, the partition number of n, denoted by
p(n), is the number of different ways to
represent n as a decreasing sum of posi-
tive integers.

The different number of partitions of 6
are shown on the right.

It is natural to ask how to compute p(n). The “trick” is to think about a recursive solution and
observe that once we decide what is the leading number d, we can solve the problem recursively
on the remaining budget n − d under the constraint that no number exceeds d..

TIP
Suggestion 4.1.2 Recursive algorithms are one of the main tools in developing algorithms (and
writing programs). If you do not feel comfortable with recursive algorithms you should spend
time playing with recursive algorithms till you feel comfortable using them. Without the ability to
think recursively, this class would be a long and painful torture to you. Speak with me if you need
guidance on this topic.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

PartitionsI(num, d)//d-max digit
if (num ≤ 1) or (d = 1)

return 1
if d > num

d ← num
res← 0
for i← d down to 1

res = res+ PartitionsI(num − i,i)
return res

Partitions(n)
return PartitionsI(n, n)

The resulting algorithm is depicted on the right.
We are interested in analyzing its running time.
To this end, draw the recursion tree of P-
 and observe that the amount of work spend
at each node, is proportional to the number of
children it has. Thus, the overall time spend by
the algorithm is proportional to the size of the
recurrence tree, which is proportional (since ev-
ery node is either a leaf or has at least two chil-
dren) to the number of leafs in the tree, which is
Θ(p(n)).

This is not very exciting, since it is easy ver-
ify that 3

√
n/4 ≤ p(n) ≤ nn.

Exercise 4.1.3 Prove the above bounds on p(n) (or better bounds).

TIP Suggestion 4.1.4 Exercises in the class notes are a natural easy questions for inclusions in exams.
You probably want to spend time doing them.

In fact, Hardy and Ramanujan (in 1918) showed that p(n) ≈ eπ
√

2n/3

4n
√

3
(which I am sure was your

first guess).
It is natural to ask, if there is a faster algorithm. Or more specifically, why is the algorithm

Partitions so slowwwwwwwwwwwwwwwwww? The answer is that during the computation of
Partitions(n) the function PartitionsI(num,max_digit) is called a lot of times with the same pa-
rameters.

PartitionsI_C(num,max_digit)
if (num ≤ 1) or (max_digit = 1)

return 1
if max_digit > num

d ← num
if 〈num,max_digit〉 in cache

return cache(〈num,max_digit〉)
res← 0
for i← max_digit down to 1 do

res += PartitionsI_C(num − i,i)
cache(〈num,max_digit〉)← res
return res

PartitionS_C(n)
return PartitionsI_C(n, n)

An easy way to overcome this problem is cache
the results of PartitionsI using a hash table.

Whenever PartitionsI is being called, it checks
in a cache table if it already computed the value
of the function for this parameters, and if so it re-
turns the result. Otherwise, it computes the value
of the function and before returning the value, it
stores it in the cache. This simple idea is known
as memoization.

What is the running time of PartitionS_C?
Analyzing recursive algorithm that have been trans-
formed by memoization are usually analyzed as
follows: (i) bound the number of values stored
in the hash table, and (ii) bound the amount of
work involved in storing one value into the hash
table (ignoring recursive calls).

Here is the argument in this case:

Throughout the course, we will assume that a hash table operation can be done in constant time. This is a
reasonable assumption using randomization and perfect hashing.

2

1. If a call to PartitionsI_C takes (by itself) more than constant time, then we perform a store
in the cache.

2. Number of store operations in the cache is O(n2).

3. We charge the work in the loop to the resulting store. The work in the loop is O(n).

4. Running time of PartitionS_C(n) is O(n3).

Note, that his analysis is naive but it would be sufficient for our purposes (verify that in fact the
bound of O(n3) on the running time is tight in this case).

4.1.1 Memoization:
This idea of memoization is very generic and very useful. To recap, it just says to take a recursive
function and cache the results as the computations goes on. Before trying to compute a value,
check if it was already computed and if it is already in the cache. If so, return result from the
cache. If it is not in the cache, compute it and store it in the cache (i.e., hash table).

• When does it work: When there is a lot of inefficiency in the computation of the recursive
function because we perform the same call again and again.

• When it does NOT work:

1. When the number of different recursive function calls (i.e., the different values of the
parameters in the recursive call) is “large”.

2. When the function has side effects.

tidbitTidbit 4.1.5 Some functional programming languages allow one to take a recursive function f (·)
that you already implemented and give you a memorized version f ′(·) of this function without the
programmer doing any extra work. For a nice description of how to implement it in Scheme see
[ASS96].

It is natural to ask if we can do better than just than caching? As usual in life – more pain,
more gain. Indeed, in a lot of cases we can analyze the recursive calls, and store them directly in
an (multi-dimensional) array. This gets rid of the recursion (which used to be an important thing
long time ago when memory used by the stack was a truly limited resource, but it is less important
nowadays) which usually yields a slight improvement in performance.

This technique is known as dynamic programming. We can sometime save space and improve
running time in dynamic programming over memoization.

Dynamic programing made easy.

1. Solve the problem using recursion - easy (?).

2. Modify the recursive program so that it caches the results.

3. Dynamic programming: Modify the cache into an array.

3

4.2 Fibonacci numbers

FibR(n)
if n ≤ 1

return 1
return FibR(n − 1)+FibR(n − 2)

Let us revisit the classical problem of computing
Fibonacci numbers. The recursive call to do so is
depicted on the right. As before, the running time of
FibR(n) is proportional to O(Fn), where Fn is the nth
Fibonacci number. It is known that

Fn =
1
√

5

1 +
√

5
2

n

+

1 −
√

5
2

n = Θ(φn) , where φ =
1 +
√

5
2

.

FibDP(n)
if n ≤ 1

return 1
if F[n] initialized

return F[n]
F[n]⇐=FibDP(n − 1)+FibDP(n − 2)
return F[n]

We can now use memoization, and with a bit
of care, it is easy enough to come up with the
dynamic programming version of this procedure,
see FibDP on the right. Clearly, the running time
of FibDP(n) is linear (i.e., O(n)).

A careful inspection of FibDP exposes the
fact that it fills the array F[...] from left to right.
In particular, it only requires the last two num-
bers in the array.

FibI(n)
prev← 0, curr ← 1
for i = 1 to n

next ← curr + prev
prev← curr
curr ← next

return curr

As such, we can get rid of the array all to-
gether, and reduce space needed to O(1): This is
a phenomena that is quite common in dynamic
programming: By carefully inspecting the way
the array/table is being filled, sometime one can
save space by being careful about the implemen-
tation.

The running time of FibI is identical to the
running time of FibDP. Can we do better?

Surprisingly, the answer is yes, if observe that(
y

x + y

)
=

(
0 1
1 1

)(
x
y

)
.

As such, (
Fn−1

Fn

)
=

(
0 1
1 1

)(
Fn−2

Fn−1

)
=

(
0 1
1 1

)2(Fn−3

Fn−2

)
=

(
0 1
1 1

)n−3(F2

F1

)
.

Thus, computing the nth Fibonacci number can be done by computing
(

0 1
1 1

)n−3

.

4

FastExp(a, n)
if n = 0 then return 1
if n = 1 then return a
if n is even then

return (FastExp(a, n/2))2

else
return a ∗

(
FastExp

(
a, n−1

2

))2

How to this quickly? Well, we know that a∗b∗c =

(a∗b)∗c = a∗(b∗c), as such one can compute an by
repeated squaring, see pseudo-code on the right. The
running time of FastExp is O(log n) as can be easily
verified. Thus, we can compute in fn in O(log n) time.

But, something is very strange. Observe that fn

has ≈ log10 1.68...n = Θ(n) digits. How can we com-
pute a number that is that large in logarithmic time?
Inherently, we assumed that the time to handle a number is O(1). This is not true in practice if the
numbers are large. Be careful with such assumptions.

4.3 Edit Distance

h a r – p e l e d
s h a r p <space> e y e d
1 0 0 0 1 0 1 0 1 0 0

Insert:
s

delete:
–

replace:
l
y

insert:
<space>

ignore:
e
e

Figure 4.1: Interpreting edit-distance as a align-
ment task. Aligning identical characters to each
other is free of cost. The price in the above ex-
ample is 4. There are other ways to get the same
edit-distance in this case.

We are given two strings A and B, and we
want to know how close the two strings are
too each other. Namely, how many edit op-
erations one has to make to turn the string A
into B?

We allow the following operations: (i) in-
sert a character, (ii) delete a character, and
(iii) replace a character by a different char-
acter. Price of each operation is one unit.

For example, consider the strings A =“har-
peled” and B =“sharp eyed”. Their edit dis-
tance is 4, as can be easily seen.

But how do we compute the edit-distance
(min # of edit operations needed)?

The idea is to list the edit operations from
left to right. Then edit distance turns into a an
alignment problem. See Figure 4.1.

ed(A[1..m], B[1..n])
if m = 0 return n
if n = 0 return m
pinsert = ed(A[1..m], B[1..(n − 1)]) + 1
pdelete = ed(A[1..(m − 1)], B[1..n]) + 1
pr/i = ed(A[1..(m − 1)], B[1..(n − 1)])

+
[
A[m] , B[n]

]
return min

(
pinsert, pdelete, preplace/ignore

)

In particular, the idea of the recursive al-
gorithm is to inspect the last character and
decide which of the categories it falls into:
insert, delete or ignore. See pseudo-code on
the right.

The running time of ed(...)? Clearly ex-
ponential, and roughly 2n+m, where n + m is
the size of the input.

So how many different recursive calls ed
performs? Only:O(m ∗ n) different calls, since the only parameters that matter are n and m.

5

edM(A[1..m], B[1..n])
if m = 0 return n
if n = 0 return m
if T [m, n] is initialized then return T [m, n]
pinsert = edM(A[1..m], B[1..(n − 1)]) + 1
pdelete = edM(A[1..(m − 1)], B[1..n]) + 1
pr/i = edM

(
A[1..(m − 1)], B[1..(n − 1)]

)
+

[
A[m] , B[n]

]
T [m, n]← min

(
pinsert, pdelete, preplace/ignore

)
return T [m, n]

So the natural thing is to in-
troduce memoization. The result-
ing algorithm edM is depicted on
the right. The running time of
edM(n,m) when executed on two
strings of length n and m respec-
tive is O(nm), since there are O(nm)
store operations in the cache, and
each store requires O(1) time (by
charging one for each recursive
call). Looking on the entry T [i, j] in the table, we realize that it depends only on T [i − 1, j],
T [i, j − 1] and T [i − 1, j − 1]. Thus, instead of recursive algorithm, we can fill the table T row by
row, from left to right.

edDP(A[1..m], B[1..n])
for i = 1 to m do T [i, 0]← i
for j = 1 to n do T [0, j]← j
for i← 1 to m do

for j← 1 to n do
pinsert = T [i, j − 1] + 1
pdelete = T [i − 1, j] + 1
pr/ignore = T [i − 1. j − 1] +

[
A[i] , B[j]

]
T [i, j]← min

(
pinsert, pdelete, pr/ignore

)
return T [m, n]

The dynamic programming ver-
sion that uses a two dimensional ar-
ray is pretty simple now to derive and
is depicted on the left. Clearly, it re-
quires O(nm) time, and O(nm) space.
See the pseudo-code of the resulting
algorithm edDP on the left.

It is enlightening to think about
the algorithm as computing for each
T [i, j] the cell it got the value from.
What you get is a tree encoded in the

table. See Figure 4.2. It is now easy to extract from the table the sequence of edit operations that
realizes the minimum edit distance between A and B. Indeed, we start a walk on this graph from the
node corresponding to T [n,m]. Every time we walk left, it corresponds to a deletion, every time
we go up, it corresponds to an insertion, and going sideways corresponds to either replace/ignore.

Note, that when computing the ith row of T [i, j], we only need to know the value of the cell
to the left of the current cell, and two cells in the row above the current cell. It is thus easy to
verify that the algorithm needs only the remember the current and previous row to compute the
edit distance. We conclude:

Theorem 4.3.1 Given two strings A and B of length n and m, respectively, one can compute their
edit distance in O(nm). This uses O(nm) space if we want to extract the sequence of edit operations,
and O(n + m) space if we only want to output the price of the edit distance.

Exercise 4.3.2 Show how to compute the sequence of edit-distance operations realizing the edit
distance using only O(n + m) space and O(nm) running time. (Hint: Use a recursive algorithm,
and argue that the recursive call is always on a matrix which is of size, roughly, half of the input
matrix.)

6

A L G O R I T H M
0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8 ← 9
↑ v

A 1 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8
↑ ↑ v

L 2 1 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7
↑ ↑ ↑ v ↖

T 3 2 1 1 ← 2 ← 3 ← 4 4 ← 5 ← 6
↑ ↑ ↑ ↑ v ↖

R 4 3 2 2 2 2 ← 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↖ ↖ v ↖

U 5 4 3 3 3 3 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↖ ↖ ↖ v

I 6 5 4 4 4 4 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ⇑

S 7 6 5 5 5 5 4 ← 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ v

T 8 7 6 6 6 6 5 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ v

I 9 8 7 7 7 7 6 5 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ v

C 10 9 8 8 8 8 7 6 6 6

Figure 4.2: Extracting the edit operations from the table.

Bibliography
[ASS96] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation of computer

programs. MIT Press, 1996.

7

	Dynamic programming
	Basic Idea - Partition Number
	Memoization:

	Fibonacci numbers
	Edit Distance

	Bibliography

