
Chapter 2

NP Completeness II
By Sariel Har-Peled, December 7, 2009¬ Version: 1.02

2.1 Max-Clique

Figure 2.1: A clique of size 4
inside a graph with 8 vertices.

We remind the reader, that a clique is a complete graph,
where every pair of vertices are connected by an edge. The
MaxClique problem asks what is the largest clique appearing
as a subgraph of G. See Figure 2.1.

Problem: MaxClique

Instance: A graph G
Question: What is the largest number of nodes
in G forming a complete subgraph?

Note that MaxClique is an optimization problem, since the output of the algorithm is a number
and not just true/false.

The first natural question, is how to solve MaxClique. A naive algorithm would work by
enumerating all subsets S ⊆ V(G), checking for each such subset S if it induces a clique in G (i.e.,
all pairs of vertices in S are connected by an edge of G). If so, we know that GS is a clique, where
GS denotes the induced subgraph on S defined by G; that is, the graph formed by removing all
the vertices are not in S from G (in particular, only edges that have both endpoints in S appear in
GS ). Finally, our algorithm would return the largest S encountered, such that GS is a clique. The
running time of this algorithm is O

(
2nn2
)

as can be easily verified.

TIP
Suggestion 2.1.1 When solving any algorithmic problem, always try first to find a simple (or even
naive) solution. You can try optimizing it later, but even a naive solution might give you useful
insight into a problem structure and behavior.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


We will prove that MaxClique is NP-H. Before dwelling into that, the simple algorithm
we devised for MaxClique shade some light on why intuitively it should be NP-H: It does not
seem like there is any way of avoiding the brute force enumeration of all possible subsets of the
vertices of G. Thus, a problem is NP-H or NP-C, intuitively, if the only way we know
how to solve the problem is to use naive brute force enumeration of all relevant possibilities.

How to prove that a problem X is NP-H? Proving that a given problem X is NP-H is
usually done in two steps. First, we pick a known NP-C problem A. Next, we show how
to solve any instance of A in polynomial time, assuming that we are given a polynomial time
algorithm that solves X.

Proving that a problem X is NP-C requires the additional burden of showing that is
in NP. Note, that only decision problems can be NP-C, but optimization problems can
be NP-H; namely, the set of NP-H problems is much bigger than the set of NP-C
problems.

Theorem 2.1.2 MaxClique is NP-H.

Proof: We show a reduction from 3SAT. So, consider an input to 3SAT, which is a formula F
defined over n variables (and with m clauses).

a b c

a

b

d

b

c

d

a dc

Figure 2.2: The generated
graph for the formula (a ∨ b ∨
c) ∧ (b ∨ c ∨ d) ∧ (a ∨ c ∨ d) ∧
(a ∨ b ∨ d).

We build a graph from the formula F by scanning it, as
follows:

(i) For every literal in the formula we generate
a vertex, and label the vertex with the literal
it corresponds to.

Note, that every clause corresponds to the
three such vertices.

(ii) We connect two vertices in the graph, if
they are: (i) in different clauses, and (ii)
they are not a negation of each other.

Let G denote the resulting graph. See Figure 2.2 for a concrete
example. Note, that this reduction can be easily be done in
quadratic time in the size of the given formula.

We claim that F is satisfiable iff there exists a clique of size
m in G.

⇒ Let x1, . . . , xn be the variables appearing in F, and let v1, . . . , vn ∈ {0, 1} be the satisfying
assignment for F. Namely, the formula F holds if we set xi = vi, for i = 1, . . . , n.

For every clause C in F there must be at least one literal that evaluates to TRUE. Pick a
vertex that corresponds to such TRUE value from each clause. Let W be the resulting set of
vertices. Clearly, W forms a clique in G. The set W is of size m, since there are m clauses
and each one contribute one vertex to the clique.

⇐ Let U be the set of m vertices which form a clique in G.

We need to translate the clique GU into a satisfying assignment of F.

2



1. xi ← TRUE if there is a vertex in U labeled with xi.

2. xi ← FALSE if there is a vertex in U labeled with xi.

This is a valid assignment as can be easily verified. Indeed, assume for the sake of contra-
diction, that there is a variable xi such that there are two vertices u, v in U labeled with xi

and xi; namely, we are trying to assign to contradictory values of xi. But then, u and v, by
construction will not be connected in G, and as such GS is not a clique. A contradiction.

Furthermore, this is a satisfying assignment as there is at least one vertex of U in each clause.
Implying, that there is a literal evaluating to TRUE in each clause. Namely, F evaluates to
TRUE.

Thus, given a polytime (i.e., polynomial time) algorithm for MaxClique, we can solve 3SAT in
polytime. We conclude that MaxClique in NP-H.

MaxClique is an optimization problem, but it can be easily restated as a decision problem.

Problem: Clique

Instance: A graph G, integer k
Question: Is there a clique in G of size k?

Theorem 2.1.3 Clique is NP-C.

Proof: It is NP-H by the previous reduction of Theorem 2.1.2. Thus, we only need to show
that it is in NP. This is quite easy. Indeed, given a graph G having n vertices, a parameter k, and a
set W of k vertices, verifying that every pair of vertices in W form an edge in G takes O(u + k2),
where u is the size of the input (i.e., number of edges + number of vertices). Namely, verifying a
positive answer to an instance of Clique can be done in polynomial time.

Thus, Clique is NP-C.

2.2 Independent Set

Definition 2.2.1 A set S of nodes in a graph G = (V, E) is an independent set, if no pair of vertices
in S are connected by an edge.

Problem: Independent Set

Instance: A graph G, integer k
Question: Is there an independent set in G of size k?

Theorem 2.2.2 Independent Set is NP-C.

Proof: We do it by a reduction from Clique. Given G and k, compute the complement graph G
where we connected two vertices u, v in G iff they are independent (i.e., not connected) in G. See
Figure 2.3. Clearly, a clique in G corresponds to an independent set in G, and vice versa. Thus,
Independent Set is NP-H, and since it is in NP, it is NPC.

3



(a) (b) (c)

Figure 2.3: (a) A clique in a graph G, (b) the complement graph is formed by all the edges not
appearing in G, and (c) the complement graph and the independent set corresponding to the clique
in G.

2.3 Vertex Cover
Definition 2.3.1 For a graph G, a set of vertices S ⊆ V(G) is a vertex cover if it touches every
edge of G. Namely, for every edge uv ∈ E(G) at least one of the endpoints is in S .

Problem: Vertex Cover

Instance: A graph G, integer k
Question: Is there a vertex cover in G of size k?

Lemma 2.3.2 A set S is a vertex cover in G iff V \ S is an independent set in G.

Proof: If S is a vertex cover, then consider two vertices u, v ∈ V \ S . If uv ∈ E(G) then the edge uv
is not covered by S . A contradiction. Thus V \ S is an independent set in G.

Similarly, if V \S is an independent set in G, then for any edge uv ∈ E(G) it must be that either
u or v are not in V \G. Namely, S covers all the edges of G.

Theorem 2.3.3 Vertex Cover is NP-C.

Proof: Vertex Cover is in NP as can be easily verified. To show that it NP-H we will do a
reduction from Independent Set. So, we are given an instance of Independent Set which is a
graph G and parameter k, and we want to know whether there is an independent set in G of size k.
By Lemma 2.3.2, G has an independent set of k iff it has a vertex cover of size n− k. Thus, feeding
G and n− k into (the supposedly given) black box that can solves vertex cover in polynomial time,
we can decide if G has an independent set of size k in polynomial time. Thus Vertex Cover is
NP-C.

2.4 Graph Coloring
Definition 2.4.1 A coloring, by c colors, of a graph G = (V, E) is a mapping C : V(G) →
{1, 2, . . . , c} such that every vertex is assigned a color (i.e., an integer), such that no two vertices
that share an edge are assigned the same color.

4



Usually, we would like to color a graph with a minimum number of colors. Deciding if a graph
can be colored with two colors is equivalent to deciding if a graph bipartite and can be done in
linear time using DFS or BFS­.

Coloring is a very useful problem for resource allocation (used in compilers for example) and
scheduling type problems.

Surprisingly, moving from two colors to three colors make the problem much harder.
Problem: 3Colorable

Instance: A graph G.
Question: Is there a coloring of G using three colors?

Theorem 2.4.2 3Colorable is NP-C.

Proof: Clearly, 3Colorable is in NP.
We prove that it is NP-C by a reduction from 3SAT. Let F be the given 3SAT instance.

The basic idea of the proof is to use gadgets to transform the formula into a graph. Intuitively, a
gadget is a small component that corresponds to some feature of the input.

X

T F

The first gadget will be the color generating gadget, which is formed by three
special vertices connected to each other, where the vertices are denoted by X, F
and T , respectively. We will consider the color used to color T to correspond to
the TRUE value, and the color of the F to correspond to the FALSE value.

X

a a

For every variable a in F , we will generate a variable gadget, which is (again)
a triangle including two new vertices, denoted by a and a, and the third vertex is
the auxiliary vertex X from the color generating gadget. Note, that in a valid 3-
coloring of the resulting graph either a would be colored by T (i.e., it would be
assigned the same color as the color as the vertex T ) and a would be colored by F, or the other way
around. Thus, a valid coloring could be interpreted as assigning TRUE or FALSE value to each
variable y, by just inspecting the color used for coloring the vertex y.

a

b

c

T

Finally, for every clause we introduce a clause gadget. See
the figure on the right how the gadget looks like for the clause
a ∨ b ∨ c. Note, that the vertices marked by a, b and c are the
corresponding vertices from the corresponding variable gadget.
We introduce five new variables for every such gadget. The claim
is that this gadget can be colored by three colors iff the clause is
satisfied. This can be done by brute force checking all 8 possibilities, and we demonstrate it only
for two cases. The reader should verify that it works also for the other cases.

a

b

c

u

T
v

w r

s

Indeed, if all three vertices (i.e., three variables in a clause)
on the left side of a variable clause are assigned the F color (in
a valid coloring of the resulting graph), then the vertices u and
v must be either be assigned X and T or T and X, respectively,
in any valid 3-coloring of this gadget (see figure on the left). As
such, the vertex w must be assigned the color F. But then, the
vertex r must be assigned the X color. But then, the vertex s has three neighbors with all three
different colors, and there is no valid coloring for s.

­If you do not know the algorithm for this, please read about it to fill the gap in your knowledge.

5



Figure 2.4: The formula (a∨ b∨ c)∧ (b∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d) reduces to the depicted
graph.

a

b

c

u

T
v

w r

s

As another example, consider the case when one of
the variables on the left is assigned the T color. Then
the clause gadget can be colored in a valid way, as
demonstrated on the figure on the right.

This concludes the reduction. Clearly, the gener-
ated graph can be computed in polynomial time. By
the above argumentation, if there is a valid 3-coloring
of the resulting graph G, then there is a satisfying as-
signment for F . Similarly, if there is a satisfying assignment for F then the G be colored in a valid
way using three colors. For how the resulting graph looks like, see Figure 2.4.

This implies that 3Colorable is NP-C. ‘

Here is an interesting related problem. You are given a graph G as input, and you know that
it is 3-colorable. In polynomial time, what is the minimum number of colors you can use to color
this graph legally? Currently, the best polynomial time algorithm for coloring such graphs, uses
O
(
n3/14
)

colors.

6


	NP Completeness II
	Max-Clique
	Independent Set
	Vertex Cover
	Graph Coloring


