1. **Greedy algorithm does not work for independent set.**

 [20 Points]

 A natural algorithm, `GreedyIndep`, for computing maximum independent set in a graph, is to repeatedly remove the vertex of lowest degree in the graph, and add it to the independent set, and remove all its neighbors.

 (a) **[5 Points]** Show an example, where this algorithm fails to output the optimal solution.
Let G be a $(k, k+1)$-uniform graph (this is a graph where every vertex has degree either k or $k+1$). Show that the above algorithm outputs an independent set of size $\Omega(n/k)$, where n is the number of vertices in G.

Let G be a graph with average degree δ (i.e., $\delta = 2|E(G)|/|V(G)|$). Prove that the above algorithm outputs an independent set of size $\Omega(n/\delta)$.

For any integer k, present an example of a graph G_k, such that GreedyIndep outputs an independent set of size $\leq |\text{OPT}(G_k)|/k$, where $\text{OPT}(G_k)$ is the largest independent set in G_k. How many vertices and edges does G_k have? What is the average degree of G_k?

2. **Greedy algorithm does not work for coloring. Really.**

Let G be a graph defined over n vertices, and let the vertices be ordered: v_1, \ldots, v_n. Let G_i be the induced subgraph of G on v_1, \ldots, v_i. Formally, $G_i = (V_i, E_i)$, where $V_i = \{v_1, \ldots, v_i\}$ and $E_i = \{uv \in E \mid u, v \in V_i \text{ and } uv \in E(G)\}$.

The greedy coloring algorithm, colors the vertices, one by one, according to their ordering. Let k_i denote the number of colors the algorithm uses to color the first i vertices.

In the i-th iteration, the algorithm considers v_i in the graph G_i. If all the neighbors of v_i in G_i are using all the k_{i-1} colors used to color G_{i-1}, the algorithm introduces a new color (i.e., $k_i = k_{i-1} + 1$) and assigns it to v_i. Otherwise, it assigns v_i one of the colors $1, \ldots, k_{i-1}$ (i.e., $k_i = k_{i-1}$).

Give an example of a graph G with n vertices, and an ordering of its vertices, such that even if G can be colored using $O(1)$ (in fact, it is possible to do this with two) colors, the greedy algorithm would color it with $\Omega(n)$ colors. (Hint: consider an ordering where the first two vertices are not connected.)

3. **Graph coloring revisited**

(a) [5 Points] Prove that a graph G with a chromatic number k (i.e., k is the minimal number of colors needed to color G), must have $\Omega(k^2)$ edges.

(b) [5 Points] Prove that a graph G with m edges can be colored using $4\sqrt{m}$ colors.

(c) [10 Points] Describe a polynomial time algorithm that given a graph G, which is 3-colorable, it computes a coloring of G using, say, at most $O(\sqrt{n})$ colors.

4. **Find kth smallest number.**

[20 Points]

This question asks you to design and analyze a randomized incremental algorithm to select the kth smallest element from a given set of n elements (from a universe with a linear order).

In an incremental algorithm, the input consists of a sequence of elements x_1, x_2, \ldots, x_n. After any prefix x_1, \ldots, x_{i-1} has been considered, the algorithm has computed the kth smallest element in x_1, \ldots, x_{i-1} (which is undefined if $i \leq k$), or if appropriate, some other invariant
from which the kth smallest element could be determined. This invariant is updated as the
next element x_i is considered.

Any incremental algorithm can be randomized by first randomly permuting the input se-
quence, with each permutation equally likely.

(a) **[5 Points]** Describe an incremental algorithm for computing the kth smallest element.

(b) **[5 Points]** How many comparisons does your algorithm perform in the worst case?

(c) **[10 Points]** What is the expected number (over all permutations) of comparisons per-
formed by the randomized version of your algorithm? (Hint: When considering x_i, what
is the probability that x_i is smaller than the kth smallest so far?) You should aim for a
bound of at most $n + O(k \log(n/k))$. Revise (a) if necessary in order to achieve this.

5. **Majority tree**

[20 Points]

Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The
root, as well as any internal node, has 3 children. Each leaf has a boolean value associated
with it. Each internal node returns the value returned by the majority of its children. The
evaluation problem consists of determining the value of the root; at each step, an algorithm
can choose one leaf whose value it wishes to read.

(a) Show that for any deterministic algorithm, there is an instance (a set of boolean values
for the leaves) that forces it to read all $n = 3^h$ leaves. (hint: Consider an adversary
argument, where you provide the algorithm with the minimal amount of information as
it request bits from you. In particular, one can devise such an adversary algorithm.).

(b) Consider the recursive randomized algorithm that evaluates two subtrees of the root
chosen at random. If the values returned disagree, it proceeds to evaluate the third sub-
tree. If they agree, it returns the value they agree on. Show the expected number of
leaves read by the algorithm on any instance is at most $n^{0.9}$.