Inaudible Voice Commands: The Long-Range Attack and Defense

Nirupam Roy, Sheng Sen, Haitham Hassanieh, Romit Roy Choudhury

Presented By: Shivam Bharuka
Tell me a joke

What does the fox say?

Send me a poem

Do I have any photos of cats?

Cheap breakfast options?

What time is it in Beijing?

Show me high resolution photos of fruit floating threateningly at night

Where do you live?

Find me cute dog videos

Are you my friend?

Add the Google 10/4 event

Show me the news today

What is the meaning of life?

Do you speak morse code?

Who let the dogs out?
Inaudible Voice Commands

Liwei Song, Prateek Mittal
Department of Electrical Engineering,
Princeton University
Normal Sound
(< 24 kHz)

Ultrasound
(> 25 kHz)

“Inaudible Acoustics”
(> 25 kHz)

“Alexa, open the garage door!”
Agenda

- Inaudible Voice Attack
- How to increase the attack range?
- How to defend against these attacks?
- Evaluation
Inaudible Voice Attack

Exhibits non-linearity for ultrasound bands

\[s_{out}(t) = \sum_{i=1}^{\infty} A_is(t) = A_1s(t) + A_2s^2(t) + A_3s^3(t) + \ldots \]

\[\approx A_1s(t) + A_2s^2(t) \]
Inaudible Voice Attack

(F_1 - F_2)

Microphone filter

Frequency

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Amplitude
Inaudible Voice Attack

BUT non-linearity requires high power …

High power makes ultrasonic speakers audible
Agenda

- Inaudible Voice Attack
- How to increase the attack range?
- How to defend against these attacks?
- Evaluation
Long Range Attack

- Exploit non-linearity of speakers
- Use multiple ultrasound speakers to reduce the audible leakage from any speaker
 - Splice the input signal into segments
 - Each segment is played by a different speaker
Long Range Attack

- Per-speaker leakage is small but they can add up to become audible
- Ensure total leakage is inaudible
 - Push the total leakage below the threshold of hearing curve
Maximize $\min_f [T(f) - L(f)]$

subject to $f_0 \leq f_1 \leq f_2 \leq \ldots \leq f_N$
Agenda

- Inaudible Voice Attack
- How to increase the attack range?
- How to defend against these attacks?
- Evaluation
Defending Inaudible Voice Commands

- Find trace of non-linearity in the recorded signal
 - Power in sub-50 Hz
 - Correlation Coefficient
 - Amplitude Skew
Defending Inaudible Voice Commands

- Regular voice signals have less energy in sub-50Hz components
 - Non-linearity shows increasing power in that band
- Correlation between the power as non-linear trace preserves some structure of the actual input voice signal
- Amplitude of inaudible signal is positively biased
Agenda

- Inaudible Voice Attack
- How to increase the attack range?
- How to defend against these attacks?
- Evaluation
Attack Range Metrics

- Wake-word hit rate vs. Attack distance (ft)
 - Alexa
 - S-Voice
 - Siri

- Command accuracy vs. Attack distance (ft)
 - Alexa
 - S-Voice
 - Siri
Discussion

- Feasibility of long range attack
 - Through-wall attack
- Other attacks on Voice Recognition System
 - Skill-Squatting
 - Other sounds

Other ideas ??