PAPER PRESENTATION:
HIGHLY PREDICTIVE BLACKLISTING

John Bambenek
CS 563
PROBLEM

• There are “tons” of malicious events detected by firewalls, intrusion detection systems, web application firewalls, etc.

• The adversarial infrastructure may be persistent, may be a VPS, compromised host, etc.

• Can I determine both what is most relevant to my organization and relevant globally that will be worth blocking “in the future”?
• Consider your typical firewall:

• iptables –A INPUT –p 80 –j ACCEPT
 • What does this not protect against?
WHAT IS DSHIELD?

- Run by SANS (I'm one of the Handlers) where people submit firewall and IDS block logs from around the world.

- Also can operate a DShield sensor as a raspberry pi. Primarily finds port-level blocks and darknet traffic.

- Each user has their own ID, can also “action” blocks. In turn, this gives a huge dataset that is ”mostly” globally representative about “loud attacks”.
THREE APPROACHES

• Global Worst Offender Lists (GWOL)
 • Misses targeted or localized attacks

• Local Worst Offender Lists (LWOL)
 • Misses attacks that may not have “gotten there” yet

• This paper introduces Highly-Predictive Blacklist (HPB) that uses elements of both.
HPB APPROACH

• Analogous to Google PageRank

• Incorporates the following:
 • Log prefiltering (i.e. RFC 1918 addresses, “local” addresses, etc)
 • Relevance based ranking (per-contributor basis)
 • Severity analysis (looks at known malware propagation patterns)
ARCHITECTURE

Dshield sensors → Prefilter → Relevance Ranking → Severity Assessment → Final List Production
PRE-FILTERING

- Drop the obvious noise:
 - RFC 1918 addresses
 - Bogons
 - Unassigned IPs
 - Why?
- Drop “internet measurement” services, crawlers, etc. Why?
- Drop common ports (80, 53, 25, 443)
RELEVANCE RANKING

- How “close” is a specific attacker to a specific victim?
- If you have enough data about many victims, you can see patterns and order of how attacks progress through internet. (i.e. Attacker X will always hit Victim A 2 days before Victim B.)

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
<th>v5</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s8</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Sample Attack Table
RELEVANCE RANKING

• Create a matrix based on \((m_{ij} / m_i)\) (common attack sources / all attack sources) for each relationship between victims and sources. (First pass)

\[
\begin{pmatrix}
0 & 0.33 & 0.083 & 0 & 0 \\
0.33 & 0 & 0.063 & 0 & 0 \\
0.083 & 0.063 & 0 & 0.13 & 0 \\
0 & 0 & 0.13 & 0 & 0.5 \\
0 & 0 & 0 & 0.5 & 0
\end{pmatrix}
\]

Figure 2: Standardized Correlation Matrix for Attack Table 1

• \(R^s = W \times b^s\) (Relevancy vector is product of Adjacency matrix and attack vector)
RELEVANCE WITH “LOOK AHEAD”

Figure 3: Relevance Evaluation Considers Possible Future Attacks
• Better version is:

\[r^s = \sum_{i=1}^{\infty} (\alpha W)^i \cdot b^s \]

• Solving for \(x \):

\[x = b^s + \alpha W \cdot x \]

• This gives something used by PageRank to figure relevant results.
ATTACK SEVERITY

- Note: This paper was done in 2008. This is important.
- Malicious behavior modeled after typical “scan-and-infect” behavior.
- Calculates based on /24 network basis.
- Three factors used: Port Score, Target Count, International Victim Count

Figure 5: Malware Associated Ports
LIST PRODUCTION

- Then just sort by score and pick X to generate the list.
- All protective technologies (firewalls, routers, etc) have limits in how many entries they can accept.
- Results showed a 20-30% increase.

<table>
<thead>
<tr>
<th></th>
<th>Increase Average</th>
<th>Increase Median</th>
<th>Increase StdDev</th>
<th>Increase Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs. GWOL</td>
<td>129</td>
<td>78</td>
<td>124</td>
<td>40 to 732</td>
</tr>
<tr>
<td>vs. LWOL</td>
<td>183</td>
<td>188</td>
<td>93</td>
<td>59 to 491</td>
</tr>
</tbody>
</table>

Table 5: Top 200 Contributors’ Hit Count Increases (Blacklist Length 1000)
RISKS

• Can a false positive entry be included?
 • There is a global white-list but not a localized one (and more importantly, there is no “good” global whitelist. (Some of my upcoming research).

• Can an attacker get their attacks excluded?
 • Can be a sensor and try to break various elements of alignment but requires broad (but not complete) knowledge of the ecosystem and relationships.

• Can all the data be poisoned?
 • It’s a volunteer system, so anyone can join and dump in junk data
CURRENT STATE

(Not in paper)

• SRI has "abandoned" the code.

• DShield no longer generates HBPLs.

• *Incoming* attack data is not as important as *outgoing* attack data.
 • Malware beacons out now, reverse shells are common. Best way to beat a firewall is to have a machine on inside using existing ACLs.
QUESTIONS?