Parallel Numerical Algorithms Chapter 11 - QR Factorization

Prof. Michael T. Heath
Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

- For given $m \times n$ matrix \boldsymbol{A}, with $m>n$, QR factorization has form

$$
A=Q\left[\begin{array}{l}
R \\
O
\end{array}\right]
$$

where matrix \boldsymbol{Q} is $m \times m$ and orthogonal, and \boldsymbol{R} is $n \times n$ and upper triangular

- Can be used to solve linear systems, least squares problems, etc.
- As with Gaussian elimination, zeros are introduced successively into matrix \boldsymbol{A}, eventually reaching upper triangular form, but using orthogonal transformations instead of elementary eliminators

Householder Transformations
Householder Transformations

- Householder transformation has form

$$
\boldsymbol{H}=\boldsymbol{I}-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}}
$$

where v is nonzero vector

- From definition, $\boldsymbol{H}=\boldsymbol{H}^{T}=\boldsymbol{H}^{-1}$, so \boldsymbol{H} is both orthogonal and symmetric
- For given vector \boldsymbol{a}, choose \boldsymbol{v} so that

$$
\boldsymbol{H a}=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha \boldsymbol{e}_{1}
$$

Householder QR Factorization

```
for \(k=1\) to \(n\)
    \(\alpha_{k}=-\operatorname{sign}\left(a_{k k}\right) \sqrt{a_{k k}^{2}+\cdots+a_{m k}^{2}}\)
    \(\boldsymbol{v}_{k}=\left[\begin{array}{llllll}0 & \cdots & 0 & a_{k k} & \cdots & a_{m k}\end{array}\right]^{T}-\alpha_{k} \boldsymbol{e}_{k}\)
    \(\beta_{k}=\boldsymbol{v}_{k}^{T} \boldsymbol{v}_{k}\)
    if \(\beta_{k}=0\) then
        continue with next \(k\)
    for \(j=k\) to \(n\)
        \(\gamma_{j}=\boldsymbol{v}_{k}^{T} \boldsymbol{a}_{j}\)
        \(\boldsymbol{a}_{j}=\boldsymbol{a}_{j}-\left(2 \gamma_{j} / \beta_{k}\right) \boldsymbol{v}_{k}\)
    end
end
```

(9) QR Factorization
(2) Householder Transformations
(3) Givens Rotations

- Householder transformations (elementary reflectors)
- Givens transformations (plane rotations)
- Gram-Schmidt orthogonalization
- Substituting into formula for \boldsymbol{H}, we see that we can take

$$
\boldsymbol{v}=\boldsymbol{a}-\alpha \boldsymbol{e}_{1}
$$

and to preserve norm we must have $\alpha= \pm\|\boldsymbol{a}\|_{2}$, with sign chosen to avoid cancellation

- Householder QR factorization is similar to Gaussian elimination for LU factorization
- Forming Householder vector \boldsymbol{v}_{k} is analogous to computing multipliers in Gaussian elimination
- Subsequent updating of remaining unreduced portion of matrix is also analogous to Gaussian elimination
- Thus, parallel implementation is similar to parallel LU, but with Householder vectors broadcast horizontally instead of multipliers
- For this reason, we will not go into details

- Givens rotation operates on pair of rows to introduce single zero
- For given 2-vector $\boldsymbol{a}=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]^{T}$, if

$$
c=\frac{a_{1}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}, \quad s=\frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}
$$

then

$$
\boldsymbol{G} \boldsymbol{a}=\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
0
\end{array}\right]
$$

- Scalars c and s are cosine and sine of angle of rotation, and $c^{2}+s^{2}=1$, so \boldsymbol{G} is orthogonal

- With 1-D partitioning of \boldsymbol{A} by columns, parallel implementation of Givens QR factorization is similar to parallel Householder QR factorization, with cosines and sines broadcast horizontally and each task updating its portion of relevant rows
- With 1-D partitioning of \boldsymbol{A} by rows, broadcast of cosines and sines is unnecessary, but there is no parallelism unless multiple pairs of rows are processed simultaneously
- Fortunately, it is possible to process multiple pairs of rows simultaneously without interfering with each other

- Communication cost is high, but can be reduced by having each task initially reduce its entire local set of rows to upper triangular form, which requires no communication
- Then, in subsequent phase, task pairs cooperate in annihilating additional entries using one row from each of two tasks, exchanging data as necessary
- Various strategies can be used for combining results of first phase, depending on underlying network topology
- With hypercube, for example, final upper triangular form can be reached in $\log p$ combining steps

- E. Chu and A. George, QR factorization of a dense matrix on a hypercube multiprocessor, SIAM J. Sci. Stat. Comput. 11:990-1028, 1990
- M. Cosnard, J. M. Muller, and Y. Robert, Parallel QR decomposition of a rectangular matrix, Numer. Math. 48:239-249, 1986
- M. Cosnard and Y. Robert, Complexity of parallel QR factorization, J. ACM 33:712-723, 1986
- E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR factorization leads to better performance, IBM J. Res. Develop. 44:605-624, 2000
- Givens rotations can be systematically applied to successive pairs of rows of matrix \boldsymbol{A} to zero entire strict lower triangle
- Subdiagonal entries of matrix can be annihilated in various possible orderings (but once introduced, zeros should be preserved)
- Each rotation must be applied to all entries in relevant pair of rows, not just entries determining c and s
- Once upper triangular form is reached, product of rotations, Q, is orthogonal, so we have QR factorization of \boldsymbol{A}

- Stage at which each subdiagonal entry can be annihilated is shown here for 8×8 example
$\left[\begin{array}{cccccccc}\times & & & & & & & \\ 7 & \times & & & & & & \\ 6 & 8 & \times & & & & & \\ 5 & 7 & 9 & \times & & & & \\ 4 & 6 & 8 & 10 & \times & & & \\ 3 & 5 & 7 & 9 & 11 & \times & & \\ 2 & 4 & 6 & 8 & 10 & 12 & \times & \\ 1 & 3 & 5 & 7 & 9 & 11 & 13 & \times\end{array}\right]$
- Maximum parallelism is $n / 2$ at stage $n-1$ for $n \times n$ matrix

- With 2-D partitioning of \boldsymbol{A}, parallel implementation combines features of 1-D column and 1-D row algorithms
- In particular, sets of rows can be processed simultaneously to annihilate multiple entries, but updating of rows requires horizontal broadcast of cosines and sines

- B. Hendrickson, Parallel QR factorization using the torus-wrap mapping, Parallel Comput. 19:1259-1271, 1993.
- F. T. Luk, A rotation method for computing the QR-decomposition, SIAM J. Sci. Stat. Comput. 7:452-459, 1986
- D. P. O'Leary and P. Whitman, Parallel QR factorization by Householder and modified Gram-Schmidt algorithms, Parallel Comput. 16:99-112, 1990.
- A. Pothen and P. Raghavan, Distributed orthogonal factorization: Givens and Householder algorithms, SIAM J. Sci. Stat. Comput. 10:1113-1134, 1989

