Parallel Numerical Algorithms Chapter 11 - QR Factorization

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

QR Factorization

• For given $m \times n$ matrix A, with m > n, QR factorization has form

$$A = Q \begin{bmatrix} R \\ O \end{bmatrix}$$

where matrix ${\bf Q}$ is $m \times m$ and orthogonal, and ${\bf R}$ is $n \times n$ and upper triangular

- Can be used to solve linear systems, least squares problems, etc.
- As with Gaussian elimination, zeros are introduced successively into matrix A, eventually reaching upper triangular form, but using orthogonal transformations instead of elementary eliminators

Michael T. Heath Parallel Nume

Householder Transformations

Householder Transformations

• Householder transformation has form

$$H = I - 2 \frac{vv^T}{v^T v}$$

where v is nonzero vector

- From definition, $H = H^T = H^{-1}$, so H is both orthogonal and symmetric
- For given vector a, choose v so that

$$egin{aligned} egin{aligned} egin{aligned} eta & egin{aligned} lpha & egin{aligned} lpha & egin{aligned} 1 & 0 \ dots & 0 \end{bmatrix} = lpha egin{aligned} e_1 & egin{aligned} egin{aligned} lpha & egi$$

Michael T. Heath Parallel Numerical Algorithms

Householder Transformations

Householder QR Factorization

$$\begin{aligned} &\text{for } k = 1 \text{ to } n \\ &\alpha_k = -\mathrm{sign}(a_{kk}) \sqrt{a_{kk}^2 + \dots + a_{mk}^2} \\ &v_k = \begin{bmatrix} 0 & \cdots & 0 & a_{kk} & \cdots & a_{mk} \end{bmatrix}^T - \alpha_k e_k \\ &\beta_k = v_k^T v_k \\ &\text{if } \beta_k = 0 \text{ then} \\ &\text{continue with next } k \\ &\text{for } j = k \text{ to } n \\ &\gamma_j = v_k^T a_j \\ &a_j = a_j - (2\gamma_j/\beta_k) v_k \\ &\text{end} \end{aligned}$$

Outline

- QR Factorization
- Householder Transformations
- Givens Rotations

- Householder transformations (elementary reflectors)
- Givens transformations (plane rotations)
- Gram-Schmidt orthogonalization

• Substituting into formula for H, we see that we can take

$$\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1$$

and to preserve norm we must have $\alpha=\pm\|\boldsymbol{a}\|_2,$ with sign chosen to avoid cancellation

- Householder QR factorization is similar to Gaussian elimination for LU factorization
- ullet Forming Householder vector $oldsymbol{v}_k$ is analogous to computing multipliers in Gaussian elimination
- Subsequent updating of remaining unreduced portion of matrix is also analogous to Gaussian elimination
- Thus, parallel implementation is similar to parallel LU, but with Householder vectors broadcast horizontally instead of multipliers
- For this reason, we will not go into details

• For given 2-vector $\boldsymbol{a} = [a_1 \ a_2]^T$, if

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}, \qquad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

then

$$m{Ga} = egin{bmatrix} c & s \ -s & c \end{bmatrix} egin{bmatrix} a_1 \ a_2 \end{bmatrix} = egin{bmatrix} lpha \ 0 \end{bmatrix}$$

• Scalars c and s are cosine and sine of angle of rotation, and $c^2+s^2=1$, so ${\bf G}$ is orthogonal

- With 1-D partitioning of A by columns, parallel implementation of Givens QR factorization is similar to parallel Householder QR factorization, with cosines and sines broadcast horizontally and each task updating its portion of relevant rows
- ullet With 1-D partitioning of A by rows, broadcast of cosines and sines is unnecessary, but there is no parallelism unless multiple pairs of rows are processed simultaneously
- Fortunately, it is possible to process multiple pairs of rows simultaneously without interfering with each other

- Communication cost is high, but can be reduced by having each task initially reduce its entire local set of rows to upper triangular form, which requires no communication
- Then, in subsequent phase, task pairs cooperate in annihilating additional entries using one row from each of two tasks, exchanging data as necessary
- Various strategies can be used for combining results of first phase, depending on underlying network topology
- ullet With hypercube, for example, final upper triangular form can be reached in $\log p$ combining steps

- E. Chu and A. George, QR factorization of a dense matrix on a hypercube multiprocessor, SIAM J. Sci. Stat. Comput. 11:990-1028, 1990
- M. Cosnard, J. M. Muller, and Y. Robert, Parallel QR decomposition of a rectangular matrix, *Numer. Math.* 48:239-249, 1986
- M. Cosnard and Y. Robert, Complexity of parallel QR factorization, J. ACM 33:712-723, 1986
- E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR factorization leads to better performance, IBM J. Res. Develop. 44:605-624, 2000

Michael T. Heath Parallel Numerical Algor

Givens QR Factorization

- Givens rotations can be systematically applied to successive pairs of rows of matrix A to zero entire strict lower triangle
- Subdiagonal entries of matrix can be annihilated in various possible orderings (but once introduced, zeros should be preserved)
- Each rotation must be applied to all entries in relevant pair of rows, not just entries determining c and s
- Once upper triangular form is reached, product of rotations,
 Q, is orthogonal, so we have QR factorization of A

 \bullet Stage at which each subdiagonal entry can be annihilated is shown here for 8×8 example

• Maximum parallelism is n/2 at stage n-1 for $n \times n$ matrix

- With 2-D partitioning of A, parallel implementation combines features of 1-D column and 1-D row algorithms
- In particular, sets of rows can be processed simultaneously to annihilate multiple entries, but updating of rows requires horizontal broadcast of cosines and sines

- B. Hendrickson, Parallel QR factorization using the torus-wrap mapping, Parallel Comput. 19:1259-1271, 1993
- F. T. Luk, A rotation method for computing the QR-decomposition, SIAM J. Sci. Stat. Comput. 7:452-459, 1986
- D. P. O'Leary and P. Whitman, Parallel QR factorization by Householder and modified Gram-Schmidt algorithms, Parallel Comput. 16:99-112, 1990.
- A. Pothen and P. Raghavan, Distributed orthogonal factorization: Givens and Householder algorithms, SIAM J. Sci. Stat. Comput. 10:1113-1134, 1989

Michael T. Heath Parallel Numerical Algorith