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QR Factorization

QR Factorization

@ For given m x n matrix A, with m > n, QR factorization

has form
R
a=a|g)

where matrix Q is m x m and orthogonal, and Risn x n
and upper triangular

@ Can be used to solve linear systems, least squares
problems, etc.

@ As with Gaussian elimination, zeros are introduced
successively into matrix A, eventually reaching upper
triangular form, but using orthogonal transformations
instead of elementary eliminators 1
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QR Factorization

Methods for QR Factorization

@ Householder transformations (elementary reflectors)
@ Givens transformations (plane rotations)

@ Gram-Schmidt orthogonalization
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Householder Transformations

Householder Transformations

@ Householder transformation has form
T
(X
H=1I-2—
vTo
where v is nonzero vector

@ From definition, H = H” = H~!, so H is both orthogonal
and symmetric

@ For given vector a, choose v so that

o 1
0 0
Ha = =« = ae;
0 0 I
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Householder Transformations

Householder Transformations

@ Substituting into formula for H, we see that we can take
v=a—ae;

and to preserve norm we must have o = £||a/|2, with sign
chosen to avoid cancellation

1
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Householder Transformations

Householder QR Factorization

fork=1ton
ag = —sign(akk)\/aik +otal,
T
vp=1[0 - 0 ap -+ amr] —ogep
B = vj vy
if 5, = 0 then

continue with next k
forj=kton

% =via;
a; = a; — (2v;/Br)vk
end

end
T
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Householder Transformations

Parallel Householder QR

@ Householder QR factorization is similar to Gaussian
elimination for LU factorization

@ Forming Householder vector vy, is analogous to computing
multipliers in Gaussian elimination

@ Subsequent updating of remaining unreduced portion of
matrix is also analogous to Gaussian elimination

@ Thus, parallel implementation is similar to parallel LU, but
with Householder vectors broadcast horizontally instead of
multipliers

@ For this reason, we will not go into details -
]
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Givens Rotations

Givens Rotations

@ Givens rotation operates on pair of rows to introduce
single zero

@ For given 2-vector a = [a1 as]”, if

C

ai as
= § = —————
2 2’ 21 2
Vi + a3 Va1 + asz

o= |2 2 [a] = o

@ Scalars ¢ and s are cosine and sine of angle of rotation,
and ¢ + s> = 1, so G is orthogonal

then
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Givens Rotations

Givens QR Factorization

@ Givens rotations can be systematically applied to
successive pairs of rows of matrix A to zero entire strict
lower triangle

@ Subdiagonal entries of matrix can be annihilated in various
possible orderings (but once introduced, zeros should be
preserved)

@ Each rotation must be applied to all entries in relevant pair
of rows, not just entries determining ¢ and s

@ Once upper triangular form is reached, product of rotations,
Q, is orthogonal, so we have QR factorization of A

1
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Givens Rotations

Parallel Givens QR Factorization

@ With 1-D partitioning of A by columns, parallel
implementation of Givens QR factorization is similar to
parallel Householder QR factorization, with cosines and
sines broadcast horizontally and each task updating its
portion of relevant rows

@ With 1-D partitioning of A by rows, broadcast of cosines
and sines is unnecessary, but there is no parallelism unless
multiple pairs of rows are processed simultaneously

@ Fortunately, it is possible to process multiple pairs of rows
simultaneously without interfering with each other

I

Michael T. Heath Parallel Numerical Algorithms



Givens Rotations

Parallel Givens QR Factorization

@ Stage at which each subdiagonal entry can be annihilated
is shown here for 8 x 8 example

X
7 X

6 8 X

5 7 9 x

4 6 8 10 x

3 5 7 9 11 x
2 4 6 8 10 12 x
1 3 5 7 9 11 13 x

@ Maximum parallelism is n/2 at stage n — 1 for n x n matrix
T
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Givens Rotations

Parallel Givens QR Factorization

@ Communication cost is high, but can be reduced by having
each task initially reduce its entire local set of rows to
upper triangular form, which requires no communication

@ Then, in subsequent phase, task pairs cooperate in
annihilating additional entries using one row from each of
two tasks, exchanging data as necessary

@ Various strategies can be used for combining results of first
phase, depending on underlying network topology

@ With hypercube, for example, final upper triangular form
can be reached in log p combining steps
I

Michael T. Heath Parallel Numerical Algorithms



Givens Rotations

Parallel Givens QR Factorization

@ With 2-D partitioning of A, parallel implementation
combines features of 1-D column and 1-D row algorithms

@ In particular, sets of rows can be processed simultaneously
to annihilate multiple entries, but updating of rows requires
horizontal broadcast of cosines and sines
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Givens Rotations
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Givens Rotations
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