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QR Factorization

For given m× n matrix A, with m > n, QR factorization
has form

A = Q

[
R
O

]
where matrix Q is m×m and orthogonal, and R is n× n
and upper triangular

Can be used to solve linear systems, least squares
problems, etc.

As with Gaussian elimination, zeros are introduced
successively into matrix A, eventually reaching upper
triangular form, but using orthogonal transformations
instead of elementary eliminators
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Methods for QR Factorization

Householder transformations (elementary reflectors)

Givens transformations (plane rotations)

Gram-Schmidt orthogonalization
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Householder Transformations

Householder transformation has form

H = I − 2
vvT

vTv

where v is nonzero vector

From definition, H = HT = H−1, so H is both orthogonal
and symmetric

For given vector a, choose v so that

Ha =


α
0
...
0

 = α


1
0
...
0

 = αe1
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Householder Transformations

Substituting into formula for H, we see that we can take

v = a− αe1

and to preserve norm we must have α = ±‖a‖2, with sign
chosen to avoid cancellation
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Householder QR Factorization

for k = 1 to n

αk = −sign(akk)
√
a2kk + · · ·+ a2mk

vk =
[
0 · · · 0 akk · · · amk

]T − αkek
βk = vT

k vk
if βk = 0 then

continue with next k
for j = k to n

γj = vT
k aj

aj = aj − (2γj/βk)vk
end

end

Michael T. Heath Parallel Numerical Algorithms 7 / 16



QR Factorization
Householder Transformations

Givens Rotations

Parallel Householder QR

Householder QR factorization is similar to Gaussian
elimination for LU factorization

Forming Householder vector vk is analogous to computing
multipliers in Gaussian elimination

Subsequent updating of remaining unreduced portion of
matrix is also analogous to Gaussian elimination

Thus, parallel implementation is similar to parallel LU, but
with Householder vectors broadcast horizontally instead of
multipliers

For this reason, we will not go into details
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Givens Rotations

Givens rotation operates on pair of rows to introduce
single zero

For given 2-vector a = [a1 a2]
T , if

c =
a1√
a21 + a22

, s =
a2√
a21 + a22

then

Ga =

[
c s
−s c

] [
a1
a2

]
=

[
α
0

]
Scalars c and s are cosine and sine of angle of rotation,
and c2 + s2 = 1, so G is orthogonal
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Givens QR Factorization

Givens rotations can be systematically applied to
successive pairs of rows of matrix A to zero entire strict
lower triangle

Subdiagonal entries of matrix can be annihilated in various
possible orderings (but once introduced, zeros should be
preserved)

Each rotation must be applied to all entries in relevant pair
of rows, not just entries determining c and s

Once upper triangular form is reached, product of rotations,
Q, is orthogonal, so we have QR factorization of A
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Parallel Givens QR Factorization

With 1-D partitioning of A by columns, parallel
implementation of Givens QR factorization is similar to
parallel Householder QR factorization, with cosines and
sines broadcast horizontally and each task updating its
portion of relevant rows

With 1-D partitioning of A by rows, broadcast of cosines
and sines is unnecessary, but there is no parallelism unless
multiple pairs of rows are processed simultaneously

Fortunately, it is possible to process multiple pairs of rows
simultaneously without interfering with each other
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Parallel Givens QR Factorization

Stage at which each subdiagonal entry can be annihilated
is shown here for 8× 8 example

×
7 ×
6 8 ×
5 7 9 ×
4 6 8 10 ×
3 5 7 9 11 ×
2 4 6 8 10 12 ×
1 3 5 7 9 11 13 ×


Maximum parallelism is n/2 at stage n− 1 for n× n matrix
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Parallel Givens QR Factorization

Communication cost is high, but can be reduced by having
each task initially reduce its entire local set of rows to
upper triangular form, which requires no communication

Then, in subsequent phase, task pairs cooperate in
annihilating additional entries using one row from each of
two tasks, exchanging data as necessary

Various strategies can be used for combining results of first
phase, depending on underlying network topology

With hypercube, for example, final upper triangular form
can be reached in log p combining steps
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Parallel Givens QR Factorization

With 2-D partitioning of A, parallel implementation
combines features of 1-D column and 1-D row algorithms

In particular, sets of rows can be processed simultaneously
to annihilate multiple entries, but updating of rows requires
horizontal broadcast of cosines and sines
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