
Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Parallel Numerical Algorithms
Chapter 8 – Triangular Systems

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath Parallel Numerical Algorithms 1 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Outline

1 Triangular Systems

2 Parallel Algorithms

3 Wavefront Algorithms

4 Cyclic Algorithms

Michael T. Heath Parallel Numerical Algorithms 2 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Triangular Matrices

Matrix L is lower triangular if all entries above its main
diagonal are zero, `ij = 0 for i < j

Matrix U is upper triangular if all entries below its main
diagonal are zero, uij = 0 for i > j

Triangular matrices are important because triangular linear
systems are easily solved by successive substitution

Most direct methods for solving general linear systems first
reduce matrix to triangular form and then solve resulting
equivalent triangular system(s)

Triangular systems are also frequently used as
preconditioners in iterative methods for solving linear
systems

Michael T. Heath Parallel Numerical Algorithms 3 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Forward Substitution

For lower triangular system Lx = b, solution can be obtained
by forward substitution

xi =
(
bi −

i−1∑
j=1

`ij xj

)
/`ii, i = 1, . . . , n

for j = 1 to n
xj = bj/`jj
for i = j + 1 to n

bi = bi − `ijxj
end

end

{ compute soln component }

{ update right-hand side }

Michael T. Heath Parallel Numerical Algorithms 4 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Back Substitution

For upper triangular system Ux = b, solution can be obtained
by back substitution

xi =
(
bi −

n∑
j=i+1

uij xj

)
/uii, i = n, . . . , 1

for j = n to 1
xj = bj/ujj
for i = 1 to j − 1

bi = bi − uijxj
end

end

{ compute soln component }

{ update right-hand side }

Michael T. Heath Parallel Numerical Algorithms 5 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Solving Triangular Systems

Forward or back substitution requires about n2/2
multiplications and similar number of additions, so model
serial time as

T1 = tc n
2/2

where tc is cost of paired multiplication and addition (we
ignore cost of n divisions)

We will consider only lower triangular systems, as
analogous algorithms for upper triangular systems are
similar

Michael T. Heath Parallel Numerical Algorithms 6 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Loop Orderings for Forward Substitution

for j = 1 to n
xj = bj/`jj
for i = j + 1 to n

bi = bi − `ij xj
end

end

right-looking
immediate-update
data-driven
fan-out

for i = 1 to n
for j = 1 to i− 1

bi = bi − `ij xj
end
xi = bi/`ii

end

left-looking
delayed-update
demand-driven
fan-in

Michael T. Heath Parallel Numerical Algorithms 7 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

Parallel Algorithm

Partition
For i = 2, . . . , n, j = 1, . . . , i− 1, fine-grain task (i, j) stores
`ij and computes product `ij xj
For i = 1, . . . , n, fine-grain task (i, i) stores `ii and bi,
collects sum ti =

∑i−1
j=1 `ij xj , and computes and stores

xi = (bi − ti)/`ii

yielding 2-D triangular array of n (n + 1)/2 fine-grain tasks

Communicate
For j = 1, . . . , n− 1, task (j, j) broadcasts xj to tasks (i, j),
i = j + 1, . . . , n

For i = 2, . . . , n, sum reduction of products `ij xj across
tasks (i, j), j = 1, . . . , i, with task (i, i) as root

Michael T. Heath Parallel Numerical Algorithms 8 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

Fine-Grain Tasks and Communication

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 9 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

Fine-Grain Parallel Algorithm

if i = j then
t = 0
if i > 1 then

recv sum reduction of t across tasks (i, k), k = 1, . . . , i
end
xi = (bi − t)/`ii
broadcast xi to tasks (k, i), k = i + 1, . . . , n

else
recv broadcast of xj from task (j, j)
t = `ij xj
reduce t across tasks (i, k), k = 1, . . . , i

end

Michael T. Heath Parallel Numerical Algorithms 10 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

Fine-Grain Algorithm

If communication is suitably pipelined, then fine-grain
algorithm can achieve Θ(n) execution time, but uses Θ(n2)
tasks, so it is inefficient

If there are multiple right-hand-side vectors b, then
successive solutions can be pipelined to increase overall
efficiency

Agglomerating fine-grain tasks yields more reasonable
number of tasks and improves ratio of computation to
communication

Michael T. Heath Parallel Numerical Algorithms 11 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath Parallel Numerical Algorithms 12 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Agglomeration

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 13 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Agglomeration

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 14 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Agglomeration

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 15 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

Mapping

Map

2-D: assign (n/k)2/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath Parallel Numerical Algorithms 16 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Agglomeration, Block Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 17 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Agglomeration, Cyclic Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53ℓ54

ℓ63ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 18 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Agglomeration, Reflection Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 19 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Algorithm

For 2-D agglomeration with (n/
√
p)× (n/

√
p) subarray of

fine-grain tasks per process, both vertical broadcasts and
horizontal sum reductions are required to communicate
solution components and accumulate inner products,
respectively

If each process holds contiguous block of rows and
columns, we obtain block version of original fine-grain
algorithm, with poor concurrency and efficiency

Moreover, this approach yields only (p +
√
p)/2 non-null

processes, wasting almost half of 2-D mesh of processors

Michael T. Heath Parallel Numerical Algorithms 20 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Algorithm

Cyclic assignment of rows and columns to processes
yields p non-null processes, so full 2-D mesh can be
utilized

But obvious implementation, looping over successive
solution components and performing corresponding
horizontal sum reductions and vertical broadcasts, still has
limited concurrency because computation for each
component involves only one process row and one process
column

Better algorithm can be obtained by computing solution
components in groups of

√
p, which permits all processes

to perform resulting updating concurrently

Michael T. Heath Parallel Numerical Algorithms 21 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Algorithm

Each step of resulting algorithm has four phases

1 Computation of next
√
p solution components by processes

in lower triangle using 2-D fine-grain algorithm

2 Broadcast of resulting solution components vertically from
processes on diagonal to processes in upper triangle

3 Computation of resulting updates (partial sums in inner
products) by all processes

4 Horizontal sum reduction from processes in upper triangle
to processes on diagonal

Michael T. Heath Parallel Numerical Algorithms 22 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Algorithm

1. Fine-grain algorithm 2. Broadcast

3. Update 4. Sum reduction

Michael T. Heath Parallel Numerical Algorithms 23 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

2-D Algorithm

Total time required is approximately

Tp = tc n
2/(2p) + (4(ts + tw) + 5 tc)n

To determine isoefficiency function, set

tc n
2/2 ≈ E (tc n

2/2 + (4(ts + tw) + 5 tc) p n)

which holds for large p if n = Θ(p), so isoefficiency function
is Θ(p2), since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 24 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Agglomeration, Block Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 25 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Agglomeration, Cyclic Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53ℓ54

ℓ63ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 26 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Agglomeration, Reflection Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 27 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Algorithm

For 1-D agglomeration with n/p columns of fine-grain tasks
per process, vertical broadcasts of components of x are
unnecessary because any given matrix column is entirely
contained in only one process

But there is also no parallelism in computing products
resulting from given component of x

Horizontal communication is required for sum reductions to
accumulate inner products

Michael T. Heath Parallel Numerical Algorithms 28 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Fan-in Algorithm

for i = 1 to n
t = 0
for j ∈ mycols, j < i,

t = t + `ij xj
end
if i ∈ mycols then

recv sum reduction of t
xi = (bi − t)/`ii

else
reduce t across processes

end
end

Michael T. Heath Parallel Numerical Algorithms 29 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Algorithm

Each process remains idle until solution component
corresponding to its first column is computed

If each process holds contiguous block of columns, it may
remain idle through most of computation

Moreover, number of products computed involving each
component of x declines with increasing column number

Concurrency and load balance can be improved by
assigning columns to processes in cyclic manner

Other mappings may also be useful, such as block-cyclic
or reflection

Michael T. Heath Parallel Numerical Algorithms 30 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Algorithm

If successive steps (outer loop) are overlapped, then
approximate execution time is

Tp = tc (n2 + 2n(p− 1))/(2p) + (ts + tw) (n− 1)

ignoring cost of additions in sum reductions

Without such overlapping, term representing
communication cost is multiplied by factor of

p− 1 for 1-D mesh
2(
√
p− 1) for 2-D mesh

log p for hypercube

representing path length for sum reduction

Michael T. Heath Parallel Numerical Algorithms 31 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Algorithm

To determine isoefficiency function, set

tc n
2/2 ≈ E (tc (n2 + 2n(p− 1))/2 + (ts + tw) p (n− 1))

which holds for large p if n = Θ(p), so isoefficiency function
is Θ(p2), since T1 = Θ(n2)

Without overlapping of successive steps, isoefficiency
function becomes

p4 for 1-D mesh
p3 for 2-D mesh
p2(log p)2 for hypercube

Michael T. Heath Parallel Numerical Algorithms 32 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Column Algorithm

Overlap achievable is strongly affected by network
topology and mapping of rows to processes

For example, cyclic mapping on ring network permits
almost complete overlap, whereas hypercube permits
much less overlap

Overlap of successive steps can potentially be enhanced
by “compute ahead” strategy

Process owning column i could compute most of its
contribution to inner product for step i + 1 while waiting for
contributions from other processes in step i, thereby
avoiding being bottleneck for next step (because it will be
last to complete step i)

Michael T. Heath Parallel Numerical Algorithms 33 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Agglomeration, Block Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 34 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Agglomeration, Cyclic Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 35 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Agglomeration, Reflection Mapping

ℓ11

 b1 x1

ℓ21
ℓ22

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath Parallel Numerical Algorithms 36 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Algorithm

For 1-D agglomeration with n/p rows of fine-grain tasks per
process, communication for horizontal sum reductions
across process rows is unnecessary because any given
matrix row is entirely contained in only one process

But there is also no parallelism in computing these sums

Vertical broadcasts are required to communicate
components of x

Michael T. Heath Parallel Numerical Algorithms 37 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Fan-out Algorithm

for j = 1 to n
if j ∈ myrows then

xj = bj/`jj
end
broadcast xj
for i ∈ myrows, i > j,

bi = bi − `ij xj
end

end

Michael T. Heath Parallel Numerical Algorithms 38 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Algorithm

Each process falls idle as soon as solution component
corresponding to its last row has been computed

If each process holds contiguous block of rows, it may
become idle long before overall computation is complete

Moreover, computation of inner products across rows
requires successively more work with increasing row
number

Concurrency and load balance can be improved by
assigning rows to processes in cyclic manner

Other mappings may also be useful, such as block-cyclic
or reflection

Michael T. Heath Parallel Numerical Algorithms 39 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Algorithm

If successive steps (outer loop) are overlapped, then
approximate execution time is

Tp = tc (n2 + 2n(p− 1))/(2p) + (ts + tw) (n− 1)

Without such overlapping, term representing
communication cost is multiplied by factor of

p− 1 for 1-D mesh
2(
√
p− 1) for 2-D mesh

log p for hypercube

representing path length for broadcast

Michael T. Heath Parallel Numerical Algorithms 40 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Algorithm

To determine isoefficiency function, set

tc n
2/2 ≈ E (tc (n2 + 2n(p− 1))/2 + (ts + tw) p (n− 1))

which holds for large p if n = Θ(p), so isoefficiency function
is Θ(p2), since T1 = Θ(n2)

Without overlapping of successive steps, isoefficiency
function becomes

p4 for 1-D mesh
p3 for 2-D mesh
p2(log p)2 for hypercube

Michael T. Heath Parallel Numerical Algorithms 41 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

Fine-Grain Algorithm
2-D Algorithm
1-D Column Algorithm
1-D Row Algorithm

1-D Row Algorithm

Overlap achievable is also strongly affected by network
topology and mapping of rows to processes

For example, cyclic mapping on ring network permits
almost complete overlap, whereas hypercube permits
much less overlap

Overlap of successive steps can potentially be enhanced
by “send ahead” strategy

At step j, process owning row j + 1 could compute xj+1

and broadcast it before completing remaining updating due
to xj

Michael T. Heath Parallel Numerical Algorithms 42 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

Wavefront Algorithms

Fan-out and fan-in algorithms derive their parallelism from
inner loop, whose work is partitioned and distributed
across processes, while outer loop is serial

Conceptually, fan-out and fan-in algorithms work on only
one component of solution at a time, though successive
steps may be pipelined to some degree

Wavefront algorithms exploit parallelism in outer loop
explicitly by working on multiple components of solution
simultaneously

Michael T. Heath Parallel Numerical Algorithms 43 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Column Wavefront Algorithm

1-D column fan-out algorithm seems to admit no
parallelism: after process owning column j computes xj ,
resulting updating of right-hand side cannot be shared with
other processes because they have no access to column j

Instead of performing all such updates immediately,
however, process owning column j could complete only
first s components of update vector and forward them to
process owning column j + 1 before continuing with next s
components of update vector, etc.

Upon receiving first s components of update vector,
process owning column j + 1 can compute xj+1, begin
further updates, forward its own contributions to next
process, etc.

Michael T. Heath Parallel Numerical Algorithms 44 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Column Wavefront Algorithm

To formalize wavefront column algorithm we introduce
z : vector in which to accumulate updates to
right-hand-side
segment : set containing at most s consecutive
components of z

Michael T. Heath Parallel Numerical Algorithms 45 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Column Wavefront Algorithm
for j ∈ mycols

for k = 1 to # segments
recv segment
if k = 1 then

xj = (bj − zj)/`jj
segment = segment − {zj}

end
for zi ∈ segment

zi = zi + `ij xj
end
if |segment | > 0 then

send segment to process owning column j + 1
end

end
end

Michael T. Heath Parallel Numerical Algorithms 46 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Column Wavefront Algorithm

Depending on segment size, column mapping,
communication-to-computation speed ratio, etc.,
it may be possible for all processes to become busy
simultaneously, each working on different component of
solution

Segment size is adjustable parameter that controls tradeoff
between communication and concurrency

“First” segment for given column shrinks by one element
after each component of solution is computed,
disappearing after s steps, when next segment becomes
“first” segment, etc.

Michael T. Heath Parallel Numerical Algorithms 47 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Column Wavefront Algorithm

At end of computation only one segment remains and it
contains only one element

Communication volume declines throughout algorithm

As segment length s increases, communication start-up
cost decreases but computation cost increases, and vice
versa as segment length decreases

Optimal choice of segment length s can be predicted from
performance model

Michael T. Heath Parallel Numerical Algorithms 48 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Column Wavefront Algorithm

Approximate execution time is

Tp = ((ts/s) + tw + tc) (n2 + np + s(s− 1)p2)/(2p)

where s is segment length

To determine isoefficiency function, set

tc n
2/2 ≈ E (((ts/s) + tw + tc) (n2 + np + s(s− 1)p2)/2)

which holds for large p if n = Θ(p), assuming s is constant,
so isoefficiency function is Θ(p2), since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 49 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Row Wavefront Algorithm

Wavefront approach can also be applied to 1-D row fan-in
algorithm

Computation of ith inner product cannot be shared
because only one process has access to row i of matrix

Thus, work on multiple components must be overlapped to
attain any concurrency

Analogous approach is to break solution vector x into
segments that are pipelined through processes

Michael T. Heath Parallel Numerical Algorithms 50 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Row Wavefront Algorithm

Initially, process owning row 1 computes x1 and sends it to
process owning row 2, which computes resulting update
and then x2

This process continues (serially at this early stage) until s
components of solution have been computed

Henceforth, receiving processes forward any full-size
segments before they are used in updating

Forwarding of currently incomplete segment is delayed
until next component of solution is computed and
appended to it

Michael T. Heath Parallel Numerical Algorithms 51 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Row Wavefront Algorithm

Michael T. Heath Parallel Numerical Algorithms 52 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Row Wavefront Algorithm
for i ∈ myrows

for k = 1 to # segments− 1
recv segment
send segment to process owning row i + 1
for xj ∈ segment

bi = bi − `ij xj

end
end
recv segment /* last may be empty */
for xj ∈ segment

bi = bi − `ij xj

end
xi = bi/`ii
segment = segment ∪ {xi}
send segment to process owning row i + 1

end

Michael T. Heath Parallel Numerical Algorithms 53 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

1-D Row Wavefront Algorithm

Instead of starting with full set of segments that shrink and
eventually disappear, segments appear and grow until
there is a full set of them

It may be possible for all processes to be busy
simultaneously, each working on different segment

Segment size is adjustable parameter that controls tradeoff
between communication and concurrency, and optimal
value of segment length s can be predicted from
performance model

Performance analysis and resulting performance model
are more complicated than for 1-D column wavefront
algorithm, but performance and scalability for 1-D row
wavefront algorithm are nevertheless similar

Michael T. Heath Parallel Numerical Algorithms 54 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

Cyclic Algorithms

In wavefront algorithms, each segment is sent up to s
times and may pass through same process repeatedly,
depending on mapping of rows or columns

Cyclic algorithms are somewhat similar to wavefront
algorithms, but they minimize communication by exploiting
cyclic mapping of rows or columns

Instead of having variable number of segments of
adjustable length, cyclic algorithms circulate single
segment of length p− 1

Michael T. Heath Parallel Numerical Algorithms 55 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Column Cyclic Algorithm

In cyclic 1-D column algorithm, segment of size p− 1,
containing partially accumulated components of update
vector z, passes from process to process, one step for
each column of matrix, cycling through all p− 1 other
processes before returning to any given process

At step j, process owning column j receives segment from
process owning column j − 1 and uses its first element
(which has accumulated all necessary prior updates) to
compute xj

Task owning column j then modifies segment by deleting
first element, updating remaining elements, and appending
new element to begin accumulation of zj+p−1

Michael T. Heath Parallel Numerical Algorithms 56 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Column Cyclic Algorithm

Segment is then sent to process owning column j + 1,
where similar procedure is repeated

After forwarding modified segment, process owning
column j then computes remaining updates resulting from
xj , which will be needed when segment returns to this
process again

Updating while segment is elsewhere provides all
concurrency, since computations on segment are serial

Michael T. Heath Parallel Numerical Algorithms 57 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Column Cyclic Algorithm

for j ∈ mycols
recv segment
xj = (bj − zj − tj)/`jj
segment = segment − {zj}
for zi ∈ segment

zi = zi + ti + `ij xj
end
zj+p−1 = tj+p−1 + `j+p−1,j xj
segment = segment ∪ {zj+p−1}
send segment to process owning column j + 1
for i = j + p to n

ti = ti + `ij xj
end

end

Michael T. Heath Parallel Numerical Algorithms 58 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Column Cyclic Algorithm

Segment must pass through all other processes before
returning to any given process, so correctness depends on
use of cyclic mapping

Maps naturally to 1-D torus (ring) network, but since only
one pair of processes communicates at any given time,
also works well with bus network

Attains minimum possible volume of interprocessor
communication to solve triangular system using
column-oriented algorithm

Michael T. Heath Parallel Numerical Algorithms 59 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Column Cyclic Algorithm

For n ≤ p (tp + p), where

tp = (ts + tw(p− 1))/tc

is cost, measured in flops, of sending message of length
p− 1, execution time is determined by segment cycle time,
so that

Tp = tc(n (tp + p)− p (p− 1)/2− tp)

For n > p (tp + p), execution time is dominated by cost of
updating, so that

Tp = tc((n
2 + n p)/(2p) + p ((tp + p)2 − tp − p + 1)/2 − tp)

Michael T. Heath Parallel Numerical Algorithms 60 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Column Cyclic Algorithm

Two-phase behavior complicates scalability analysis, but
tradeoff point between phases for n as function of p grows
like p2, so isoefficiency function is at least Θ(p4)

Performance of both phases can be improved

Segment cycle time can be reduced by breaking segment
into smaller pieces and pipelining them through processes
Updating work can be reorganized, deferring excessive
work until later cycles, to obtain more even distribution
throughout computation

Michael T. Heath Parallel Numerical Algorithms 61 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Row Cyclic Algorithm

1-D row cyclic algorithm is similar, except processes are
agglomerated by rows and segment contains p− 1
components of solution x

At step i, process owning row i receives segment from
process owning row i− 1 and uses components of x it
contains to complete ith inner product, so that xi can then
be computed

Task then modifies segment by deleting first element and
appending new element xi just computed

Segment is then sent to process owning row i + 1, where
similar procedure is repeated

Michael T. Heath Parallel Numerical Algorithms 62 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Row Cyclic Algorithm

After forwarding modified segment, process then computes
partial inner products that use components of segment,
which will be further accumulated when segment returns to
this process again

Latter computations, which take place while segment
passes through other processes, provide concurrency in
algorithm, because computations on segment itself are
serial

Again, correctness of algorithm depends on use of cyclic
mapping

Performance and scalability are similar to those for 1-D
column cyclic algorithm, although details differ

Michael T. Heath Parallel Numerical Algorithms 63 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

1-D Row Cyclic Algorithm

for i ∈ myrows
recv segment
for xj ∈ segment

bi = bi − `ij xj
end
xi = bi/`ii
segment = segment − {xi−p} ∪ {xi}
send segment to process owning row i + 1
for m ∈ myrows, m > i,

for xj ∈ segment
bm = bm − `mj xj

end
end

end

Michael T. Heath Parallel Numerical Algorithms 64 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

References

R. H. Bisseling and J. G. G. van de Vorst, Parallel triangular
system solving on a mesh network of Transputers, SIAM J. Sci.
Stat. Comput. 12:787-799, 1991

S. C. Eisenstat, M. T. Heath, C. S. Henkel, and C. H. Romine,
Modified cyclic algorithms for solving triangular systems on
distributed-memory multiprocessors, SIAM J. Sci. Stat. Comput.
9:589-600, 1988

M. T. Heath and C. H. Romine, Parallel solution of triangular
systems on distributed-memory multiprocessors, SIAM J. Sci.
Stat. Comput. 9:558-588, 1988

N. J. Higham, Stability of parallel triangular system solvers,
SIAM J. Sci. Comput. 16:400-413, 1995

Michael T. Heath Parallel Numerical Algorithms 65 / 66

Triangular Systems
Parallel Algorithms

Wavefront Algorithms
Cyclic Algorithms

1-D Column Cyclic Algorithm
1-D Row Cyclic Algorithm

References

G. Li and T. F. Coleman, A parallel triangular solver for a
distributed-memory multiprocessor, SIAM J. Sci. Stat. Comput.
9:485-502, 1988

G. Li and T. F. Coleman, A new method for solving triangular
systems on distributed-memory message-passing
multiprocessors, SIAM J. Sci. Stat. Comput. 10:382-396, 1989

C. H. Romine and J. M. Ortega, Parallel solution of triangular
systems of equations, Parallel Computing 6:109-114, 1988

E. E. Santos, On designing optimal parallel triangular solvers,
Information and Computation 161:172-210, 2000

Michael T. Heath Parallel Numerical Algorithms 66 / 66

	Triangular Systems
	Parallel Algorithms
	
	
	
	

	Wavefront Algorithms
	
	

	Cyclic Algorithms
	
	

