
Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Numerical Algorithms
Chapter 7 – Cholesky Factorization

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath Parallel Numerical Algorithms 1 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Outline

1 Cholesky Factorization

2 Parallel Dense Cholesky

3 Parallel Sparse Cholesky

Michael T. Heath Parallel Numerical Algorithms 2 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm

Cholesky Factorization

Symmetric positive definite matrix A has Cholesky
factorization

A = LLT

where L is lower triangular matrix with positive diagonal
entries

Linear system
Ax = b

can then be solved by forward-substitution in lower
triangular system Ly = b, followed by back-substitution in
upper triangular system LTx = y

Michael T. Heath Parallel Numerical Algorithms 3 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm

Computing Cholesky Factorization

Algorithm for computing Cholesky factorization can be
derived by equating corresponding entries of A and LLT

and generating them in correct order

For example, in 2× 2 case[
a11 a21
a21 a22

]
=

[
`11 0
`21 `22

] [
`11 `21
0 `22

]
so we have

`11 =
√
a11, `21 = a21/`11, `22 =

√
a22 − `221

Michael T. Heath Parallel Numerical Algorithms 4 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm

Cholesky Factorization Algorithm

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik ajk

end
end

end

Michael T. Heath Parallel Numerical Algorithms 5 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm

Cholesky Factorization Algorithm

All n square roots are of positive numbers, so algorithm
well defined

Only lower triangle of A is accessed, so strict upper
triangular portion need not be stored

Factor L is computed in place, overwriting lower triangle of
A

Pivoting is not required for numerical stability

About n3/6 multiplications and similar number of additions
are required (about half as many as for LU)

Michael T. Heath Parallel Numerical Algorithms 6 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes and stores {

`ij , if i ≥ j
`ji, if i < j

yielding 2-D array of n2 fine-grain tasks

Zero entries in upper triangle of L need not be computed
or stored, so for convenience in using 2-D mesh network,
`ij can be redundantly computed as both task (i, j) and
task (j, i) for i > j

Michael T. Heath Parallel Numerical Algorithms 7 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Fine-Grain Tasks and Communication

a11
ℓ11

a21
ℓ21

a21
ℓ21

a22
ℓ22

a31
ℓ31

a41
ℓ41

a32
ℓ32

a42
ℓ42

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
ℓ33

a43
ℓ43

a43
ℓ43

a44
ℓ44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a51
ℓ51

a61
ℓ61

a52
ℓ52

a62
ℓ62

a53
ℓ53

a63
ℓ63

a54
ℓ54

a64
ℓ64

a55
ℓ55

a65
ℓ65

a65
ℓ65

a66
ℓ66

Michael T. Heath Parallel Numerical Algorithms 8 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Fine-Grain Parallel Algorithm
for k = 1 to min(i, j)− 1

recv broadcast of akj from task (k, j)
recv broadcast of aik from task (i, k)
aij = aij − aik akj

end
if i = j then

aii =
√
aii

broadcast aii to tasks (k, i) and (i, k), k = i + 1, . . . , n
else if i < j then

recv broadcast of aii from task (i, i)
aij = aij/aii
broadcast aij to tasks (k, j), k = i + 1, . . . , n

else
recv broadcast of ajj from task (j, j)
aij = aij/ajj
broadcast aij to tasks (i, k), k = j + 1, . . . , n

end

Michael T. Heath Parallel Numerical Algorithms 9 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Agglomeration Schemes

Agglomerate

Agglomeration of fine-grain tasks produces

2-D
1-D column
1-D row

parallel algorithms analogous to those for LU factorization,
with similar performance and scalability

Rather than repeat analyses for dense matrices, we focus
instead on sparse matrices, for which column-oriented
algorithms are typically used

Michael T. Heath Parallel Numerical Algorithms 10 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Loop Orderings for Cholesky

Each choice of i, j, or k index in outer loop yields different
Cholesky algorithm, named for portion of matrix updated by
basic operation in inner loops

Submatrix-Cholesky : with k in outer loop, inner loops
perform rank-1 update of remaining unreduced submatrix
using current column

Column-Cholesky : with j in outer loop, inner loops
compute current column using matrix-vector product that
accumulates effects of previous columns

Row-Cholesky : with i in outer loop, inner loops compute
current row by solving triangular system involving previous
rows

Michael T. Heath Parallel Numerical Algorithms 11 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Memory Access Patterns

read only read and write

Submatrix-Cholesky Column-Cholesky Row-Cholesky

Michael T. Heath Parallel Numerical Algorithms 12 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik ajk

end
end

end

Column-Cholesky

for j = 1 to n
for k = 1 to j − 1

for i = j to n
aij = aij − aik ajk

end
end
ajj =

√
ajj

for i = j + 1 to n
aij = aij/ajj

end
end

Michael T. Heath Parallel Numerical Algorithms 13 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Column Operations

Column-oriented algorithms can be stated more compactly by
introducing column operations

cdiv (j): column j is divided by square root of its diagonal
entry

ajj =
√
ajj

for i = j + 1 to n
aij = aij/ajj

end

cmod (j, k): column j is modified by multiple of column k,
with k < j

for i = j to n
aij = aij − aik ajk

end

Michael T. Heath Parallel Numerical Algorithms 14 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
cdiv (k)
for j = k + 1 to n

cmod (j, k)
end

end

right-looking
immediate-update
data-driven
fan-out

Column-Cholesky

for j = 1 to n
for k = 1 to j − 1

cmod (j, k)
end
cdiv (j)

end

left-looking
delayed-update
demand-driven
fan-in

Michael T. Heath Parallel Numerical Algorithms 15 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Data Dependences

cmod (k + 1, k) cmod (k + 2, k) cmod (n, k)• • •

cdiv (k)

cmod (k, 1) cmod (k, 2) cmod (k, k - 1)• • •

Michael T. Heath Parallel Numerical Algorithms 16 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Data Dependences

cmod (k, ∗) operations along bottom can be done in any
order, but they all have same target column, so updating
must be coordinated to preserve data integrity

cmod (∗, k) operations along top can be done in any order,
and they all have different target columns, so updating can
be done simultaneously

Performing cmods concurrently is most important source
of parallelism in column-oriented factorization algorithms

For dense matrix, each cdiv (k) depends on immediately
preceding column, so cdivs must be done sequentially

Michael T. Heath Parallel Numerical Algorithms 17 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Sparse Matrices

Matrix is sparse if most of its entries are zero

For efficiency, store and operate on only nonzero entries,
e.g., cmod (j, k) need not be done if ajk = 0

But more complicated data structures required incur extra
overhead in storage and arithmetic operations

Matrix is “usefully” sparse if it contains enough zero entries
to be worth taking advantage of them to reduce storage
and work required

In practice, sparsity worth exploiting for family of matrices if
there are Θ(n) nonzero entries, i.e., (small) constant
number of nonzeros per row or column

Michael T. Heath Parallel Numerical Algorithms 18 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Sparsity Structure

For sparse matrix M , let Mi∗ denote its ith row and M∗j
its jth column

Define Struct (Mi∗) = {k < i | mik 6= 0}, nonzero structure
of row i of strict lower triangle of M

Define Struct (M∗j) = {k > j | mkj 6= 0}, nonzero structure
of column j of strict lower triangle of M

Michael T. Heath Parallel Numerical Algorithms 19 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Sparse Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
cdiv (k)
for j ∈ Struct (L∗k)

cmod (j, k)
end

end

right-looking
immediate-update
data-driven
fan-out

Column-Cholesky

for j = 1 to n
for k ∈ Struct (Lj∗)

cmod (j, k)
end
cdiv (j)

end

left-looking
delayed-update
demand-driven
fan-in

Michael T. Heath Parallel Numerical Algorithms 20 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Graph Model

Graph G(A) of symmetric n× n matrix A is undirected
graph having n vertices, with edge between vertices i and
j if aij 6= 0

At each step of Cholesky factorization algorithm,
corresponding vertex is eliminated from graph

Neighbors of eliminated vertex in previous graph become
clique (fully connected subgraph) in modified graph

Entries of A that were initially zero may become nonzero
entries, called fill

Michael T. Heath Parallel Numerical Algorithms 21 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Graph Model of Elimination

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

3

7

6

9

5

4

8

2

3

7

6

9

5

4

8 7

6

9

5

4

8

7

6

9

5

89 8 7

6

9 87 9 89

Michael T. Heath Parallel Numerical Algorithms 22 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Elimination Tree

parent (j) is row index of first offdiagonal nonzero
in column j of L, if any, and j otherwise

Elimination tree T (A) is graph having n vertices, with edge
between vertices i and j, for i > j, if
i = parent (j)

If matrix is irreducible, then elimination tree is single tree
with root at vertex n; otherwise, it is more accurately
termed elimination forest

T (A) is spanning tree for filled graph F (A), which is G(A)
with all fill edges added

Each column of Cholesky factor L depends only on its
descendants in elimination tree

Michael T. Heath Parallel Numerical Algorithms 23 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Elimination Tree

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

3

7

1

6

9

5

4

8

2
3

7

1

6

9

5

4

8

2
G (A) F (A) T (A)

Michael T. Heath Parallel Numerical Algorithms 24 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Effect of Matrix Ordering

Amount of fill depends on order in which variables are
eliminated

Example: “arrow” matrix — if first row and column are
dense, then factor fills in completely, but if last row and
column are dense, then they cause no fill

×
×

×
××

××
×

× ×
×××
×
×
×

×

×× × ×××××

×
×

×
× ×

×× ×
××

××
×
×
×
×

×

×××××× × ×

Michael T. Heath Parallel Numerical Algorithms 25 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Ordering Heuristics

General problem of finding ordering that minimizes fill is
NP-complete, but there are relatively cheap heuristics that limit
fill effectively

Bandwidth or profile reduction : reduce distance of nonzero
diagonals from main diagonal (e.g., RCM)

Minimum degree : eliminate node having fewest neighbors
first

Nested dissection : recursively split graph into pieces,
numbering nodes in separators last

Michael T. Heath Parallel Numerical Algorithms 26 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Symbolic Factorization

For SPD matrices, ordering can be determined in advance
of numeric factorization

Only locations of nonzeros matter, not their numerical
values, since pivoting is not required for numerical stability

Once ordering is selected, locations of all fill entries in L
can be anticipated and efficient static data structure set up
to accommodate them prior to numeric factorization

Structure of column j of L is given by union of structures of
lower triangular portion of column j of A and prior columns
of L whose first nonzero below diagonal is in row j

Michael T. Heath Parallel Numerical Algorithms 27 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Solving Sparse SPD Systems

Basic steps in solving sparse SPD systems by Cholesky
factorization

1 Ordering : Symmetrically reorder rows and columns of
matrix so Cholesky factor suffers relatively little fill

2 Symbolic factorization : Determine locations of all fill
entries and allocate data structures in advance to
accommodate them

3 Numeric factorization : Compute numeric values of entries
of Cholesky factor

4 Triangular solution : Compute solution by forward- and
back-substitution

Michael T. Heath Parallel Numerical Algorithms 28 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Parallel Sparse Cholesky

In sparse submatrix- or column-Cholesky, if ajk = 0, then
cmod (j, k) is omitted

Sparse factorization thus has additional source of
parallelism, since “missing” cmods may permit multiple
cdivs to be done simultaneously

Elimination tree shows data dependences among columns
of Cholesky factor L, and hence identifies potential
parallelism

At any point in factorization process, all factor columns
corresponding to leaf nodes of elimination tree can be
computed simultaneously

Michael T. Heath Parallel Numerical Algorithms 29 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Parallel Sparse Cholesky

Height of elimination tree determines longest serial path
through computation, and hence parallel execution time

Width of elimination tree determines degree of parallelism
available

Short, wide, well-balanced elimination tree desirable for
parallel factorization

Structure of elimination tree depends on ordering of matrix

So ordering should be chosen both to preserve sparsity
and to enhance parallelism

Michael T. Heath Parallel Numerical Algorithms 30 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Levels of Parallelism in Sparse Cholesky

Fine-grain
Task is one multiply-add pair
Available in either dense or sparse case
Difficult to exploit effectively in practice

Medium-grain
Task is one cmod or cdiv
Available in either dense or sparse case
Accounts for most of speedup in dense case

Large-grain
Task computes entire set of columns in subtree of
elimination tree
Available only in sparse case

Michael T. Heath Parallel Numerical Algorithms 31 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Band Ordering, 1-D Grid

×
××

××
×

××
××

×
×

×

××

××
×

×

A

×
××

××
×

×
××

××
×

×

L

4

1

6

3

5

7

2

T (A)

4

1

6

3

5

7

2

G (A)

Michael T. Heath Parallel Numerical Algorithms 32 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Minimum Degree, 1-D Grid

×
××

××
×

× ×
××

×
×
×

××

×
××

×

A

×
××

××
×

×
××

×
××

×

L

7

1

4

5

6

2

3

G (A)

4

6

7

2

T (A)

1

3

5

Michael T. Heath Parallel Numerical Algorithms 33 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Nested Dissection, 1-D Grid

×
××

××
×

× ×

×

×

×
×
×××

×
××

×

A

×
××

××
×

×
××

×
×

×
×

L

7

1

6

2

5

4

3

G (A)

+ +
4

6

7

2

T (A)

1

3

5

Michael T. Heath Parallel Numerical Algorithms 34 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Band Ordering, 2-D Grid

×
×

×
××

××
×

×× ×
× ×

×
×× ×

××
×

×

×

×
×

×××
×

×
×

×
×

×

A

×
×

×
××

××
×

×
×
××

××
×

×
×
×

×
×

×

L

+ +
+

+
+

7

4

1

8

5

2

9

6

3

G (A)

+
++

4

1

6

3

5

7

9

8

2

T (A)

Michael T. Heath Parallel Numerical Algorithms 35 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Minimum Degree, 2-D Grid

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

G (A)

3

7

1

6

9

5

4

8

2

T (A)

Michael T. Heath Parallel Numerical Algorithms 36 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Nested Dissection, 2-D Grid

×
×

×
××

××
×

× × ×
× ×

×
×××
×
×
×

×
×

×

×

××
×

×
×

×
××

×
A

×
×

×
××

××
×

×
×

×

×

××
×

× ×
×

×
××
L

+ +
+ ++

4

7

1

6

8

3

5

9

2

G (A)

4

7

1

6

9

3

5

8

2

T (A)

Michael T. Heath Parallel Numerical Algorithms 37 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Mapping

Cyclic mapping of columns to processors works well for
dense problems, because it balances load and
communication is global anyway

To exploit locality in communication for sparse
factorization, better approach is to map columns in subtree
of elimination tree onto local subset of processors

Still use cyclic mapping within dense submatrices
(“supernodes”)

Michael T. Heath Parallel Numerical Algorithms 38 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Subtree Mapping

00

00

00

0

0

0

1

1

1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2 3

3

3

3

3

3

3

3

3

0

0

1

2

2

3

2

3

0

1

3

1

0

Michael T. Heath Parallel Numerical Algorithms 39 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Fan-Out Sparse Cholesky
for j ∈ mycols

if j is leaf node in T (A) then
cdiv (j)
send L∗j to processes in map (Struct (L∗j))
mycols = mycols − { j }

end
end
while mycols 6= ∅

receive any column of L, say L∗k
for j ∈ mycols ∩ Struct (L∗k)

cmod (j, k)
if column j requires no more cmods then

cdiv (j)
send L∗j to processes in map (Struct (L∗j))
mycols = mycols − { j }

end
end

end
Michael T. Heath Parallel Numerical Algorithms 40 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Fan-In Sparse Cholesky
for j = 1 to n

if j ∈ mycols or mycols ∩ Struct (Lj∗) 6= ∅ then
u = 0
for k ∈ mycols ∩ Struct (Lj∗)

u = u + `jk L∗k
if j ∈ mycols then

incorporate u into factor column j
while any aggregated update column

for column j remains, receive one
and incorporate it into factor column j

end
cdiv (j)

else
send u to process map (j)

end
end

end

Michael T. Heath Parallel Numerical Algorithms 41 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Multifrontal Sparse Cholesky

Multifrontal algorithm operates recursively, starting from
root of elimination tree for A

Dense frontal matrix Fj is initialized to have nonzero
entries from corresponding row and column of A as its first
row and column, and zeros elsewhere

Fj is then updated by extend_add operations with update
matrices from its children in elimination tree

extend_add operation, denoted by ⊕, merges matrices by
taking union of their subscript sets and summing entries for
any common subscripts

After updating of Fj is complete, its partial Cholesky
factorization is computed, producing corresponding row
and column of L as well as update matrix Uj

Michael T. Heath Parallel Numerical Algorithms 42 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: extend_add

a11 a13 a15 a18
a31 a33 a35 a38
a51 a53 a55 a58
a81 a83 a85 a88

⊕

b11 b12 b15 b17
b21 b22 b25 b27
b51 b52 b55 b57
b71 b72 b75 b77

=

a11 + b11 b12 a13 a15 + b15 b17 a18
b21 b22 0 b25 b27 0
a31 0 a33 a35 0 a38

a51 + b51 b52 a53 a55 + b55 b57 a58
b71 b72 0 b75 b77 0
a81 0 a83 a85 0 a88

Michael T. Heath Parallel Numerical Algorithms 43 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Multifrontal Sparse Cholesky

Factor(j)
Let {i1, . . . , ir} = Struct (L∗j)

Let Fj =

aj,j aj,i1 . . . aj,ir
ai1,j 0 . . . 0

...
...

. . .
...

air,j 0 . . . 0

for each child i of j in elimination tree

Factor(i)
Fj = Fj ⊕Ui

end
Perform one step of dense Cholesky:

Fj =

`j,j 0
`i1,j

... I
`ir,j

1 0

0 Uj

`j,j `i1,j . . . `ir,j

0 I

Michael T. Heath Parallel Numerical Algorithms 44 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Advantages of Multifrontal Method

Most arithmetic operations performed on dense matrices,
which reduces indexing overhead and indirect addressing

Can take advantage of loop unrolling, vectorization, and
optimized BLAS to run at near peak speed on many types
of processors

Data locality good for memory hierarchies, such as cache,
virtual memory with paging, or explicit out-of-core solvers

Naturally adaptable to parallel implementation by
processing multiple independent fronts simultaneously on
different processors

Parallelism can also be exploited in dense matrix
computations within each front

Michael T. Heath Parallel Numerical Algorithms 45 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Summary for Parallel Sparse Cholesky

Principal ingredients in efficient parallel algorithm for sparse
Cholesky factorization

Reordering matrix to obtain relatively short and well
balanced elimination tree while also limiting fill

Multifrontal or supernodal approach to exploit dense
subproblems effectively

Subtree mapping to localize communication

Cyclic mapping of dense subproblems to achieve good
load balance

2-D algorithm for dense subproblems to enhance
scalability

Michael T. Heath Parallel Numerical Algorithms 46 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Scalability of Sparse Cholesky

Performance and scalability of sparse Cholesky depend on
sparsity structure of particular matrix

Sparse factorization requires factorization of dense matrix
of size Θ(

√
n) for 2-D grid problem with n grid points, so

isoefficiency function is at least Θ(p3) for 1-D algorithm and
Θ(p
√
p) for 2-D algorithm

Scalability analysis is difficult for arbitrary sparse problems,
but best current parallel algorithms for sparse factorization
can achieve isoefficienty Θ(p

√
p) for important classes of

problems

Michael T. Heath Parallel Numerical Algorithms 47 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Dense Cholesky

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
Communication-optimal parallel and sequential Cholesky
decomposition, SIAM J. Sci. Comput. 32:3495-3523, 2010

J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

D. O’Leary and G. W. Stewart, Data-flow algorithms for
parallel matrix computations, Comm. ACM 28:840-853,
1985

D. O’Leary and G. W. Stewart, Assignment and scheduling
in parallel matrix factorization, Linear Algebra Appl.
77:275-299, 1986

Michael T. Heath Parallel Numerical Algorithms 48 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Sparse Cholesky
M. T. Heath, Parallel direct methods for sparse linear
systems, D. E. Keyes, A. Sameh, and V. Venkatakrishnan,
eds., Parallel Numerical Algorithms, pp. 55-90, Kluwer,
1997

M. T. Heath, E. Ng and B. W. Peyton, Parallel algorithms
for sparse linear systems, SIAM Review 33:420-460, 1991

J. Liu, Computational models and task scheduling for
parallel sparse Cholesky factorization, Parallel Computing
3:327-342, 1986

J. Liu, Reordering sparse matrices for parallel elimination,
Parallel Computing 11:73-91, 1989

J. Liu, The role of elimination trees in sparse factorization,
SIAM J. Matrix Anal. Appl. 11:134-172, 1990

Michael T. Heath Parallel Numerical Algorithms 49 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Multifrontal Methods

I. S. Duff, Parallel implementation of multifrontal schemes,
Parallel Computing 3:193-204, 1986

A. Gupta, Parallel sparse direct methods: a short tutorial,
IBM Research Report RC 25076, November 2010

J. Liu, The multifrontal method for sparse matrix solution:
theory and practice, SIAM Review 34:82-109, 1992

J. A. Scott, Parallel frontal solvers for large sparse linear
systems, ACM Trans. Math. Software 29:395-417, 2003

Michael T. Heath Parallel Numerical Algorithms 50 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Scalability

A. George, J. Lui, and E. Ng, Communication results for
parallel sparse Cholesky factorization on a hypercube,
Parallel Computing 10:287-298, 1989

A. Gupta, G. Karypis, and V. Kumar, Highly scalable
parallel algorithms for sparse matrix factorization, IEEE
Trans. Parallel Distrib. Systems 8:502-520, 1997

T. Rauber, G. Runger, and C. Scholtes, Scalability of
sparse Cholesky factorization, Internat. J. High Speed
Computing 10:19-52, 1999

R. Schreiber, Scalability of sparse direct solvers,
A. George, J. R. Gilbert, and J. Liu, eds., Graph Theory
and Sparse Matrix Computation, pp. 191-209,
Springer-Verlag, 1993

Michael T. Heath Parallel Numerical Algorithms 51 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

References – Nonsymmetric Sparse Systems

I. S. Duff and J. A. Scott, A parallel direct solver for large
sparse highly unsymmetric linear systems, ACM Trans.
Math. Software 30:95-117, 2004

A. Gupta, A shared- and distributed-memory parallel
general sparse direct solver, Appl. Algebra Engrg.
Commun. Comput., 18(3):263-277, 2007

X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable
distributed-memory sparse direct solver for unsymmetric
linear systems, ACM Trans. Math. Software 29:110-140,
2003

K. Shen, T. Yang, and X. Jiao, S+: Efficient 2D sparse LU
factorization on parallel machines, SIAM J. Matrix Anal.
Appl. 22:282-305, 2000

Michael T. Heath Parallel Numerical Algorithms 52 / 52

	Cholesky Factorization
	
	
	

	Parallel Dense Cholesky
	
	
	

	Parallel Sparse Cholesky
	
	
	

