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Cholesky Factorization

Symmetric positive definite matrix A has Cholesky
factorization

A = LLT

where L is lower triangular matrix with positive diagonal
entries

Linear system
Ax = b

can then be solved by forward-substitution in lower
triangular system Ly = b, followed by back-substitution in
upper triangular system LTx = y
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Computing Cholesky Factorization

Algorithm for computing Cholesky factorization can be
derived by equating corresponding entries of A and LLT

and generating them in correct order

For example, in 2× 2 case[
a11 a21
a21 a22

]
=

[
`11 0
`21 `22

] [
`11 `21
0 `22

]
so we have

`11 =
√
a11, `21 = a21/`11, `22 =

√
a22 − `221

Michael T. Heath Parallel Numerical Algorithms 4 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Cholesky Factorization
Computing Cholesky
Cholesky Algorithm

Cholesky Factorization Algorithm

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik ajk

end
end

end
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Cholesky Factorization Algorithm

All n square roots are of positive numbers, so algorithm
well defined

Only lower triangle of A is accessed, so strict upper
triangular portion need not be stored

Factor L is computed in place, overwriting lower triangle of
A

Pivoting is not required for numerical stability

About n3/6 multiplications and similar number of additions
are required (about half as many as for LU)

Michael T. Heath Parallel Numerical Algorithms 6 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Parallel Algorithm
Loop Orderings
Column-Oriented Algorithms

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes and stores {

`ij , if i ≥ j
`ji, if i < j

yielding 2-D array of n2 fine-grain tasks

Zero entries in upper triangle of L need not be computed
or stored, so for convenience in using 2-D mesh network,
`ij can be redundantly computed as both task (i, j) and
task (j, i) for i > j
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Fine-Grain Tasks and Communication
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Fine-Grain Parallel Algorithm
for k = 1 to min(i, j)− 1

recv broadcast of akj from task (k, j)
recv broadcast of aik from task (i, k)
aij = aij − aik akj

end
if i = j then

aii =
√
aii

broadcast aii to tasks (k, i) and (i, k), k = i + 1, . . . , n
else if i < j then

recv broadcast of aii from task (i, i)
aij = aij/aii
broadcast aij to tasks (k, j), k = i + 1, . . . , n

else
recv broadcast of ajj from task (j, j)
aij = aij/ajj
broadcast aij to tasks (i, k), k = j + 1, . . . , n

end
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Agglomeration Schemes

Agglomerate

Agglomeration of fine-grain tasks produces

2-D
1-D column
1-D row

parallel algorithms analogous to those for LU factorization,
with similar performance and scalability

Rather than repeat analyses for dense matrices, we focus
instead on sparse matrices, for which column-oriented
algorithms are typically used
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Loop Orderings for Cholesky

Each choice of i, j, or k index in outer loop yields different
Cholesky algorithm, named for portion of matrix updated by
basic operation in inner loops

Submatrix-Cholesky : with k in outer loop, inner loops
perform rank-1 update of remaining unreduced submatrix
using current column

Column-Cholesky : with j in outer loop, inner loops
compute current column using matrix-vector product that
accumulates effects of previous columns

Row-Cholesky : with i in outer loop, inner loops compute
current row by solving triangular system involving previous
rows
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Memory Access Patterns

read only read and write

Submatrix-Cholesky Column-Cholesky Row-Cholesky
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Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik ajk

end
end

end

Column-Cholesky

for j = 1 to n
for k = 1 to j − 1

for i = j to n
aij = aij − aik ajk

end
end
ajj =

√
ajj

for i = j + 1 to n
aij = aij/ajj

end
end
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Column Operations

Column-oriented algorithms can be stated more compactly by
introducing column operations

cdiv ( j ): column j is divided by square root of its diagonal
entry

ajj =
√
ajj

for i = j + 1 to n
aij = aij/ajj

end

cmod ( j, k): column j is modified by multiple of column k,
with k < j

for i = j to n
aij = aij − aik ajk

end
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Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
cdiv (k)
for j = k + 1 to n

cmod ( j, k)
end

end

right-looking
immediate-update
data-driven
fan-out

Column-Cholesky

for j = 1 to n
for k = 1 to j − 1

cmod ( j, k)
end
cdiv ( j)

end

left-looking
delayed-update
demand-driven
fan-in
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Data Dependences

cmod (k + 1, k ) cmod (k + 2, k ) cmod (n, k )•  •  •

cdiv (k )

cmod (k, 1) cmod (k, 2 ) cmod (k, k - 1 )•  •  •
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Data Dependences

cmod (k, ∗) operations along bottom can be done in any
order, but they all have same target column, so updating
must be coordinated to preserve data integrity

cmod (∗, k) operations along top can be done in any order,
and they all have different target columns, so updating can
be done simultaneously

Performing cmods concurrently is most important source
of parallelism in column-oriented factorization algorithms

For dense matrix, each cdiv (k) depends on immediately
preceding column, so cdivs must be done sequentially
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Sparse Matrices

Matrix is sparse if most of its entries are zero

For efficiency, store and operate on only nonzero entries,
e.g., cmod ( j, k) need not be done if ajk = 0

But more complicated data structures required incur extra
overhead in storage and arithmetic operations

Matrix is “usefully” sparse if it contains enough zero entries
to be worth taking advantage of them to reduce storage
and work required

In practice, sparsity worth exploiting for family of matrices if
there are Θ(n) nonzero entries, i.e., (small) constant
number of nonzeros per row or column
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Sparsity Structure

For sparse matrix M , let Mi∗ denote its ith row and M∗j
its jth column

Define Struct (Mi∗) = {k < i | mik 6= 0}, nonzero structure
of row i of strict lower triangle of M

Define Struct (M∗j) = {k > j | mkj 6= 0}, nonzero structure
of column j of strict lower triangle of M
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Sparse Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n
cdiv ( k)
for j ∈ Struct (L∗k)

cmod ( j, k)
end

end

right-looking
immediate-update
data-driven
fan-out

Column-Cholesky

for j = 1 to n
for k ∈ Struct (Lj∗)

cmod ( j, k)
end
cdiv ( j)

end

left-looking
delayed-update
demand-driven
fan-in
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Graph Model

Graph G(A) of symmetric n× n matrix A is undirected
graph having n vertices, with edge between vertices i and
j if aij 6= 0

At each step of Cholesky factorization algorithm,
corresponding vertex is eliminated from graph

Neighbors of eliminated vertex in previous graph become
clique (fully connected subgraph) in modified graph

Entries of A that were initially zero may become nonzero
entries, called fill
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Example: Graph Model of Elimination
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Elimination Tree

parent ( j) is row index of first offdiagonal nonzero
in column j of L, if any, and j otherwise

Elimination tree T (A) is graph having n vertices, with edge
between vertices i and j, for i > j, if
i = parent ( j)

If matrix is irreducible, then elimination tree is single tree
with root at vertex n; otherwise, it is more accurately
termed elimination forest

T (A) is spanning tree for filled graph F (A), which is G(A)
with all fill edges added

Each column of Cholesky factor L depends only on its
descendants in elimination tree
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Example: Elimination Tree
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Effect of Matrix Ordering

Amount of fill depends on order in which variables are
eliminated

Example: “arrow” matrix — if first row and column are
dense, then factor fills in completely, but if last row and
column are dense, then they cause no fill
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Ordering Heuristics

General problem of finding ordering that minimizes fill is
NP-complete, but there are relatively cheap heuristics that limit
fill effectively

Bandwidth or profile reduction : reduce distance of nonzero
diagonals from main diagonal (e.g., RCM)

Minimum degree : eliminate node having fewest neighbors
first

Nested dissection : recursively split graph into pieces,
numbering nodes in separators last
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Symbolic Factorization

For SPD matrices, ordering can be determined in advance
of numeric factorization

Only locations of nonzeros matter, not their numerical
values, since pivoting is not required for numerical stability

Once ordering is selected, locations of all fill entries in L
can be anticipated and efficient static data structure set up
to accommodate them prior to numeric factorization

Structure of column j of L is given by union of structures of
lower triangular portion of column j of A and prior columns
of L whose first nonzero below diagonal is in row j
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Solving Sparse SPD Systems

Basic steps in solving sparse SPD systems by Cholesky
factorization

1 Ordering : Symmetrically reorder rows and columns of
matrix so Cholesky factor suffers relatively little fill

2 Symbolic factorization : Determine locations of all fill
entries and allocate data structures in advance to
accommodate them

3 Numeric factorization : Compute numeric values of entries
of Cholesky factor

4 Triangular solution : Compute solution by forward- and
back-substitution
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Parallel Sparse Cholesky

In sparse submatrix- or column-Cholesky, if ajk = 0, then
cmod ( j, k) is omitted

Sparse factorization thus has additional source of
parallelism, since “missing” cmods may permit multiple
cdivs to be done simultaneously

Elimination tree shows data dependences among columns
of Cholesky factor L, and hence identifies potential
parallelism

At any point in factorization process, all factor columns
corresponding to leaf nodes of elimination tree can be
computed simultaneously
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Parallel Sparse Cholesky

Height of elimination tree determines longest serial path
through computation, and hence parallel execution time

Width of elimination tree determines degree of parallelism
available

Short, wide, well-balanced elimination tree desirable for
parallel factorization

Structure of elimination tree depends on ordering of matrix

So ordering should be chosen both to preserve sparsity
and to enhance parallelism
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Levels of Parallelism in Sparse Cholesky

Fine-grain
Task is one multiply-add pair
Available in either dense or sparse case
Difficult to exploit effectively in practice

Medium-grain
Task is one cmod or cdiv
Available in either dense or sparse case
Accounts for most of speedup in dense case

Large-grain
Task computes entire set of columns in subtree of
elimination tree
Available only in sparse case
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Example: Band Ordering, 1-D Grid
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Example: Minimum Degree, 1-D Grid
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Example: Nested Dissection, 1-D Grid
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Example: Band Ordering, 2-D Grid
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Example: Minimum Degree, 2-D Grid

×
×

×
××

××
×

× × ×
× ×××× ×

×
×
×

××
×
× ××
×

× ×
××××

A

×
×

×
××

××
×

×

×
×
× ××
×

× ×
××××

L

+ +
+ ++

3

7

1

6

9

5

4

8

2

G (A)

3

7

1

6

9

5

4

8

2

T (A)

Michael T. Heath Parallel Numerical Algorithms 36 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Example: Nested Dissection, 2-D Grid
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Mapping

Cyclic mapping of columns to processors works well for
dense problems, because it balances load and
communication is global anyway

To exploit locality in communication for sparse
factorization, better approach is to map columns in subtree
of elimination tree onto local subset of processors

Still use cyclic mapping within dense submatrices
(“supernodes”)
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Example: Subtree Mapping
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Fan-Out Sparse Cholesky
for j ∈ mycols

if j is leaf node in T (A) then
cdiv ( j)
send L∗j to processes in map (Struct (L∗j))
mycols = mycols − { j }

end
end
while mycols 6= ∅

receive any column of L, say L∗k
for j ∈ mycols ∩ Struct (L∗k)

cmod ( j, k)
if column j requires no more cmods then

cdiv ( j)
send L∗j to processes in map (Struct (L∗j))
mycols = mycols − { j }

end
end

end
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Fan-In Sparse Cholesky
for j = 1 to n

if j ∈ mycols or mycols ∩ Struct (Lj∗) 6= ∅ then
u = 0
for k ∈ mycols ∩ Struct (Lj∗)

u = u + `jk L∗k
if j ∈ mycols then

incorporate u into factor column j
while any aggregated update column

for column j remains, receive one
and incorporate it into factor column j

end
cdiv ( j)

else
send u to process map ( j)

end
end

end

Michael T. Heath Parallel Numerical Algorithms 41 / 52

Cholesky Factorization
Parallel Dense Cholesky

Parallel Sparse Cholesky

Sparse Elimination
Matrix Orderings
Parallel Algorithms

Multifrontal Sparse Cholesky

Multifrontal algorithm operates recursively, starting from
root of elimination tree for A

Dense frontal matrix Fj is initialized to have nonzero
entries from corresponding row and column of A as its first
row and column, and zeros elsewhere

Fj is then updated by extend_add operations with update
matrices from its children in elimination tree

extend_add operation, denoted by ⊕, merges matrices by
taking union of their subscript sets and summing entries for
any common subscripts

After updating of Fj is complete, its partial Cholesky
factorization is computed, producing corresponding row
and column of L as well as update matrix Uj
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Example: extend_add


a11 a13 a15 a18
a31 a33 a35 a38
a51 a53 a55 a58
a81 a83 a85 a88

⊕

b11 b12 b15 b17
b21 b22 b25 b27
b51 b52 b55 b57
b71 b72 b75 b77



=



a11 + b11 b12 a13 a15 + b15 b17 a18
b21 b22 0 b25 b27 0
a31 0 a33 a35 0 a38

a51 + b51 b52 a53 a55 + b55 b57 a58
b71 b72 0 b75 b77 0
a81 0 a83 a85 0 a88
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Multifrontal Sparse Cholesky

Factor( j)
Let {i1, . . . , ir} = Struct (L∗j)

Let Fj =


aj,j aj,i1 . . . aj,ir
ai1,j 0 . . . 0

...
...

. . .
...

air,j 0 . . . 0


for each child i of j in elimination tree

Factor(i)
Fj = Fj ⊕Ui

end
Perform one step of dense Cholesky:

Fj =


`j,j 0
`i1,j

... I
`ir,j


1 0

0 Uj

`j,j `i1,j . . . `ir,j

0 I
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Advantages of Multifrontal Method

Most arithmetic operations performed on dense matrices,
which reduces indexing overhead and indirect addressing

Can take advantage of loop unrolling, vectorization, and
optimized BLAS to run at near peak speed on many types
of processors

Data locality good for memory hierarchies, such as cache,
virtual memory with paging, or explicit out-of-core solvers

Naturally adaptable to parallel implementation by
processing multiple independent fronts simultaneously on
different processors

Parallelism can also be exploited in dense matrix
computations within each front
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Summary for Parallel Sparse Cholesky

Principal ingredients in efficient parallel algorithm for sparse
Cholesky factorization

Reordering matrix to obtain relatively short and well
balanced elimination tree while also limiting fill

Multifrontal or supernodal approach to exploit dense
subproblems effectively

Subtree mapping to localize communication

Cyclic mapping of dense subproblems to achieve good
load balance

2-D algorithm for dense subproblems to enhance
scalability
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Scalability of Sparse Cholesky

Performance and scalability of sparse Cholesky depend on
sparsity structure of particular matrix

Sparse factorization requires factorization of dense matrix
of size Θ(

√
n ) for 2-D grid problem with n grid points, so

isoefficiency function is at least Θ(p3) for 1-D algorithm and
Θ(p
√
p ) for 2-D algorithm

Scalability analysis is difficult for arbitrary sparse problems,
but best current parallel algorithms for sparse factorization
can achieve isoefficienty Θ(p

√
p ) for important classes of

problems
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