Parallel Numerical Algorithms
Chapter 6-LU Factorization

Prof. Michael T. Heath
Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

- System of linear algebraic equations has form

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

where \boldsymbol{A} is given $n \times n$ matrix, \boldsymbol{b} is given n-vector, and \boldsymbol{x} is unknown solution n-vector to be computed

- Direct method for solving general linear system is by computing $L U$ factorization

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}
$$

where L is unit lower triangular and \boldsymbol{U} is upper triangular

LU factorization can be computed by Gaussian elimination as follows, where \boldsymbol{U} overwrites \boldsymbol{A}

```
for }k=1\mathrm{ to }n-
    for }i=k+1\mathrm{ to }
        \ellik}=\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{
    end
    for j=k+1 to n
        for i=k+1 to n
            aij = aij - \ell ik a}\mp@subsup{a}{kj}{
        end
    end
end
```


- Gaussian elimination has general form of triple-nested loop in which entries of \boldsymbol{L} and \boldsymbol{U} overwrite those of \boldsymbol{A}

```
for
    -__
        for
        for
            aij}=\mp@subsup{a}{ij}{}-(\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{})\mp@subsup{a}{kj}{
        end
        end
end
```

- Indices i, j, and k of for loops can be taken in any order, for total of $3!=6$ different ways of arranging loops
(1) LU Factorization
- Motivation
- Gaussian Elimination
(2)

Parallel Algorithms for LU

- Fine-Grain Algorithm
- Agglomeration Schemes
- Scalability
(3) Partial Pivoting

- System $\boldsymbol{A x}=\boldsymbol{b}$ then becomes

$$
L \boldsymbol{U} \boldsymbol{x}=\boldsymbol{b}
$$

- Solve lower triangular system

$$
L y=b
$$

by forward-substitution to obtain vector \boldsymbol{y}

- Finally, solve upper triangular system

$$
\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}
$$

by back-substitution to obtain solution x to original system

- In general, row interchanges (pivoting) may be required to ensure existence of LU factorization and numerical stability of Gaussian elimination algorithm, but for simplicity we temporarily ignore this issue
- Gaussian elimination requires about $n^{3} / 3$ paired additions and multiplications, so model serial time as

$$
T_{1}=t_{c} n^{3} / 3
$$

where t_{c} is time required for multiply-add operation

- About $n^{2} / 2$ divisions also required, but we ignore this lower-order term

- Different loop orders have different memory access patterns, which may cause their performance to vary widely, depending on architectural features such as cache, paging, vector registers, etc.
- Perhaps most promising for parallel implementation are kij and $k j i$ forms, which differ only in accessing matrix by rows or columns, respectively

- $k j i$ form of Gaussian elimination

$$
\text { for } k=1 \text { to } n-1
$$

$$
\text { for } i=k+1 \text { to } n
$$

$$
\ell_{i k}=a_{i k} / a_{k k}
$$

end

$$
\text { for } j=k+1 \text { to } n
$$

$$
\text { for } i=k+1 \text { to } n
$$ $a_{i j}=a_{i j}-\ell_{i k} a_{k j}$

end

end
end

- Multipliers $\ell_{i k}$ computed outside inner loop for greater efficiency

1
Michael T. Heath Parallel Numerical Algorithms
allel Algorithms for LU $\begin{aligned} & \text { Agglomeration Schemes } \\ & \text { Partial Pivoting }\end{aligned}$
Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n / k)^{2}$ coarse-grain tasks
- 1-D column: combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

\{ vert bcast \}
\{ horiz bcast \}
\{ update entry \}
end
if $i \leq j$ then
broadcast $a_{i j}$ to tasks $(k, j), k=i+1, \ldots, n \quad$ \{vert bcast \} else
recv broadcast of $a_{j j}$ from task (j, j)
$\ell_{i j}=a_{i j} / a_{j j}$
broadcast $\ell_{i j}$ to task $(i, k), k=j+1, \ldots$
end
\{ horiz bcast \}

Map

- 2-D: assign $(n / k)^{2} / p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: assign n / p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

```
for \(k=1\) to \(n-1\)
    broadcast \(\left\{a_{k j}: j \in\right.\) mycols, \(\left.j \geq k\right\}\) in process column
    if \(k \in\) mycols then
            for \(i \in\) myrows, \(i>k\)
                \(\ell_{i k}=a_{i k} / a_{k k} \quad\{\) multipliers \}
            end
    end
    broadcast \(\left\{\ell_{i k}: i \in\right.\) myrows, \(\left.i>k\right\}\) in process row
    for \(j \in\) mycols, \(j>k\)
        for \(i \in\) myrows, \(i>k\),
            \(a_{i j}=a_{i j}-\ell_{i k} a_{k j} \quad\{\) update \(\}\)
            end
        end
end
```

 Aggomeration Schemes
 Scalability
Performance Enhancements

Performance can also be enhanced by overlapping communication and computation

- At step k, each process completes updating its portion of remaining unreduced submatrix before moving on to step $k+1$
- Broadcast of each segment of row $k+1$, and computation and broadcast of each segment of multipliers for step $k+1$, could be initiated as soon as relevant segments of row $k+1$ and column $k+1$ have been updated by their owners, before completing remainder of their updating for step k
- This send ahead strategy enables other processes to start working on next step earlier than they otherwise could

- Matrix rows need not be broadcast vertically, since any given column is contained entirely in only one process
- But there is no parallelism in computing multipliers or updating any given column
- Horizontal broadcasts still required to communicate multipliers for updating

- Each process becomes idle as soon as its last row and column are completed
- With block mapping, in which each process holds contiguous block of rows and columns, some processes become idle long before overall computation is complete
- Block mapping also yields unbalanced load, as computing multipliers and updates requires successively less work with increasing row and column numbers
- Cyclic or reflection mapping improves both concurrency and load balance


```
for k=1 to n-1
    if k\in mycols then
        for i=k+1 to n
            \ell ik =aik/akk { multipliers }
        end
    end
    broadcast {\mp@subsup{\ell}{ik}{}:k<i\leqn} {broadcast }
    for j\in mycols, j>k
        for i=k+1 to n
            aij = aij - \ellik akj { update }
        end
    end
end
```



```
for k=1 to n-1
    broadcast {\mp@subsup{a}{kj}{}:k\leqj\leqn}\quad{broadcast }
    for i\in myrows,i>k,
        \ellik}=\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{}\quad{\mathrm{ multipliers }
    end
    for j=k+1 to n
        for i\in myrows, i>k,
                aij}=\mp@subsup{a}{ij}{}-\mp@subsup{\ell}{ik}{}\mp@subsup{a}{kj}{
            end
    end
end
```


- Updating by each process at step k requires about $(n-k)^{2} / p$ operations
- Summing over $n-1$ steps

$$
\begin{aligned}
T_{\mathrm{comp}} & \approx t_{c} \sum_{k=1}^{n-1}(n-k)^{2} / p \\
& \approx t_{c} n^{3} /(3 p)
\end{aligned}
$$

- Total execution time is

$$
T_{p} \approx t_{c} n^{3} /(3 p)+2 t_{s} n+t_{w} n^{2} / \sqrt{p}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{3} / 3 \approx E\left(t_{c} n^{3} / 3+2 t_{s} n p+t_{w} n^{2} \sqrt{p}\right)
$$

which holds for large p if $n=\Theta(\sqrt{p})$, so isoefficiency function is $\Theta(p \sqrt{p})$, since $T_{1}=\Theta\left(n^{3}\right)$

- Multipliers need not be broadcast horizontally, since any given matrix row is contained entirely in only one process
- But there is no parallelism in updating any given row
- Vertical broadcasts still required to communicate each row of matrix to processes below it for updating

- Same performance enhancements as for 2-D agglomeration apply to both 1-D column and 1-D row agglomerations as well, including cyclic mapping and send ahead strategy

- Similarly, amount of data broadcast at step k along each process row and column is about $(n-k) / \sqrt{p}$, so on 2-D mesh

$$
\begin{aligned}
T_{\mathrm{comm}} & \approx \sum_{k=1}^{n-1} 2\left(t_{s}+t_{w}(n-k) / \sqrt{p}\right) \\
& \approx 2 t_{s} n+t_{w} n^{2} / \sqrt{p}
\end{aligned}
$$

where we have allowed for overlap of broadcasts for successive steps

- With either 1-D column or 1-D row agglomeration, updating by each process at step k requires about $(n-k)^{2} / p$ operations
- Summing over $n-1$ steps

$$
\begin{aligned}
T_{\text {comp }} & \approx t_{c} \sum_{k=1}^{n-1}(n-k)^{2} / p \\
& \approx t_{c} n^{3} /(3 p)
\end{aligned}
$$

- Amount of data broadcast at step k is about $n-k$, so on 1-D mesh

$$
\begin{aligned}
T_{\text {comm }} & \approx \sum_{k=1}^{n-1}\left(t_{s}+t_{w}(n-k)\right) \\
& \approx t_{s} n+t_{w} n^{2} / 2
\end{aligned}
$$

where we have allowed for overlap of broadcasts for successive steps
Partial Pivoting $\left.\begin{array}{r}\text { LU Factorization } \\ \text { Parallel Algorithm for LU } \\ \text { Partial Pivoting }\end{array}\right)$

- Row ordering of \boldsymbol{A} is irrelevant in system of linear equations
- Partial pivoting takes rows in order of largest entry in magnitude of leading column of remaining unreduced matrix
- This choice ensures that multipliers do not exceed 1 in magnitude, which reduces amplification of rounding errors
- In general, partial pivoting is required to ensure existence and numerical stability of LU factorization

Michael T. Heath Parallel Numerical Algorithms

- Partial pivoting complicates parallel implementation of Gaussian elimination and significantly affects potential performance
- With 2-D algorithm, pivot search is parallel but requires communication within process column and inhibits overlapping of successive steps
- With 1-D column algorithm, pivot search requires no communication but is purely serial
- Once pivot is found, index of pivot row must be communicated to other processes, and rows must be explicitly or implicitly interchanged in each process

- Because of negative effects of partial pivoting on parallel performance, various alternatives have been proposed that limit pivot search
- tournament pivoting
- threshold pivoting
- pairwise pivoting
- Such strategies are not foolproof and may trade off some degree of stability and accuracy for speed
- Stability and accuracy may be recovered via iterative refinement, but this has its own cost
- Total execution time is

$$
T_{p} \approx t_{c} n^{3} /(3 p)+t_{s} n+t_{w} n^{2} / 2
$$

- To determine isoefficiency function, set

$$
t_{c} n^{3} / 3 \approx E\left(t_{c} n^{3} / 3+t_{s} n p+t_{w} n^{2} p / 2\right)
$$

which holds for large p if $n=\Theta(p)$, so isoefficiency function is $\Theta\left(p^{3}\right)$, since $T_{1}=\Theta\left(n^{3}\right)$

- Partial pivoting yields factorization of form

$$
P A=L U
$$

where \boldsymbol{P} is permutation matrix

- If $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, then system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ becomes

$$
P A x=L U x=P b
$$

which can be solved by forward-substitution in lower triangular system $\boldsymbol{L} \boldsymbol{y}=\boldsymbol{P b}$, followed by back-substitution in upper triangular system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$

Michael T. Heath Parallel Numerical Algorithms

LU Factorization Parallel Algorithms for LU Partial Pivoting

Parallel Partial Pivoting

- With 1-D row algorithm, pivot search is parallel but requires communication among processes and inhibits overlapping of successive steps
- If rows are explicitly interchanged, then only two processes are involved
- If rows are implicitly interchanged, then mapping of rows to processes is altered, which may degrade concurrency and load balance
- Tradeoff between column and row algorithms with partial pivoting depends on relative speeds of communication and computation

- If explicit replication of storage is allowed, then lower communication volume is possible
- As with matrix multiplication, "2.5-D" algorithms have recently been developed that use partial storage replication to reduce communication volume to whatever extent available memory allows
- If sufficient memory is avaiable, then these algorithms can achieve provably optimal communication

References

- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, Acta Numerica 2:111-197, 1993
- G. A. Geist and C. H. Romine, LU factorization algorithms on distributed-memory multiprocessor architectures, SIAM J. Sci. Stat. Comput. 9:639-649, 1988
- L. Grigori, J. Demmel, and H. Xiang, CALU: A communication optimal LU factorization algorithm, SIAM J. Matrix Anal. Appl. 32:1317-1350, 2011
- B. A. Hendrickson and D. E. Womble, The torus-wrap mapping for dense matrix calculations on massively parallel computers, SIAM J. Sci. Stat. Comput. 15:1201-1226, 1994

