

Gaussian Elimination Gaussian Elimination Algorithm

• kji form of Gaussian elimination

LU Factorizatio

for k = 1 to n - 1for i = k + 1 to n $\ell_{ik} = a_{ik}/a_{kk}$ end for j = k + 1 to nfor i = k + 1 to n $a_{ij} = a_{ij} - \ell_{ik} \, a_{kj}$ end end

end

• Multipliers ℓ_{ik} computed outside inner loop for greater efficiency

Michael T. Heath Parallel Numerical Aloc

1

9/42

1

Parallel Algorithms for LU Fine-Grain Tasks and Communication

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks
- 1-D column: combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

I 13/42

1

Michael T. Heath Parallel Numerical Algorithms Parallel Algorithms for LU Agglomeration Schemes

1-D Column Agglomeration

LU Factorization Parallel Algorithms for LU Partial Pivoting	Fine-Grain Algorithm Agglomeration Schemes Scalability
Parallel Algorithm	
Partition	

• For i, j = 1, ..., n, fine-grain task (i, j) stores a_{ij} and computes and stores

> $\int u_{ij}, \text{ if } i \leq j$ $\left\{ \begin{array}{ll} \ell_{ij}, & \text{if } i > j \end{array} \right.$

yielding 2-D array of n^2 fine-grain tasks

Communicate

- Broadcast entries of A vertically to tasks below
- Broadcast entries of L horizontally to tasks to right

	・ロト ・四ト ・ヨト ・ヨト	≥ 9900			
Michael T. Heath	Parallel Numerical Algorithms	10 / 42			
LU Factorization Parallel Algorithms for LU Partial Pivoting	Fine-Grain Algorithm Agglomeration Schemes Scalability				
Fine-Grain Parallel Algorithm					
for $k = 1$ to $\min(i, j) - 1$ recv broadcast of a_{kj} from task recv broadcast of ℓ_{ik} from task $a_{ij} = a_{ij} - \ell_{ik} a_{kj}$		st }			
end					

end	
if $i \leq j$ then	
broadcast a_{ij} to tasks $(k, j), k = i + 1, \dots, n$	{ vert bcast }
else	
recv broadcast of a_{jj} from task (j, j)	{ vert bcast }
$\ell_{ij} = a_{ij}/a_{jj}$	{ multiplier }
broadcast ℓ_{ij} to tasks (i,k) , $k = j + 1, \dots, n$	{ horiz bcast }
end	

Parallel Algorithms for LU Agglomeration Schemes

2-D Agglomeration

1 14/42

1

I

1

Parallel Algorithms for LU Agglomeration Schemes 1-D Row Agglomeration

lichael T. Heath

	$\begin{pmatrix} a_{12} \\ u_{12} \end{pmatrix}$	$\begin{pmatrix} a_{13} \\ u_{13} \end{pmatrix}$	(a ₁₄) (u ₁₄)	(a ₁₅ (u ₁₅)	$\binom{a_{16}}{u_{16}}$		
+							
$\begin{pmatrix} a_{21} \\ \ell_{21} \end{pmatrix}$	$\begin{pmatrix} a_{22} \\ u_{22} \end{pmatrix}$	$\begin{pmatrix} a_{23} \\ u_{23} \end{pmatrix}$	$\begin{pmatrix} a_{24} \\ u_{24} \end{pmatrix}$	$\begin{pmatrix} a_{25} \\ u_{25} \end{pmatrix}$	$\binom{a_{26}}{u_{26}}$		
$\begin{pmatrix} a_{31} \\ \ell_{31} \end{pmatrix}$	$\begin{pmatrix} a_{32} \\ \ell_{32} \end{pmatrix}$	$\begin{pmatrix} a_{33} \\ u_{33} \end{pmatrix}$	(a34 (u34)	(a35 (u35)	(a36 (u36)		
$\begin{pmatrix} a_{41} \\ \ell_{41} \end{pmatrix}$	(a42 (l42)	(a43) (l43)	(a44 (u44)	(a45 (u45)	(a46 (u46)		
$\begin{pmatrix} a_{51} \\ \ell_{51} \end{pmatrix}$	$\begin{pmatrix} a_{s_2} \\ \ell_{s_2} \end{pmatrix}$	(a ₅₃) (l ₅₃)	(a ₅₄) (l ₅₄)	(a55 U55	(a56 (u56)		
	$\begin{pmatrix} a_{62} \\ \ell_{62} \end{pmatrix}$	$\begin{pmatrix} a_{63} \\ \ell_{63} \end{pmatrix}$	(a ₆₄) (l ₆₄)	$\begin{pmatrix} a_{65} \\ \ell_{65} \end{pmatrix}$	(a ₆₆ u ₆₆)		

Parallel Numerical Algorithms

Parallel Algorithms for LU 2-D Agglomeration with Cyclic Mapping

Agglomeration Schemes

Мар

• 2-D: assign $(n/k)^2/p$ coarse-grain tasks to each of pprocesses using any desired mapping in each dimension, treating target network as 2-D mesh

rithms for LU

Agglomeration Schemes

• 1-D: assign n/p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

Performance Enhancements

Performance can also be enhanced by overlapping communication and computation

- At step k, each process completes updating its portion of remaining unreduced submatrix before moving on to step k+1
- Broadcast of each segment of row k + 1, and computation and broadcast of each segment of multipliers for step k + 1, could be initiated as soon as relevant segments of row k+1 and column k+1 have been updated by their owners, before completing remainder of their updating for step k
- This send ahead strategy enables other processes to start working on next step earlier than they otherwise could

Michael T. Heath Parallel Numerical Algorithms Parallel Algorithms for LU Agglomeration Schemes

1-D Column Agglomeration

- Parallel Algorithms for LU Agglomeration Schemes Performance Enhancements
 - Each process becomes idle as soon as its last row and column are completed
 - With block mapping, in which each process holds contiguous block of rows and columns, some processes become idle long before overall computation is complete
 - Block mapping also yields unbalanced load, as computing multipliers and updates requires successively less work with increasing row and column numbers
 - Cyclic or reflection mapping improves both concurrency and load balance

T

22/42

T

1

18/42

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithms for LU Agglomeration Schemes

Coarse-Grain 1-D Column Parallel Algorithm

for k = 1 to n - 1if $k \in mycols$ then for i = k + 1 to n{ multipliers } $\ell_{ik} = a_{ik}/a_{kk}$ end end broadcast { $\ell_{ik} : k < i \leq n$ } { broadcast } for $j \in mycols, j > k$ for i = k + 1 to n $a_{ij} = a_{ij} - \ell_{ik} \, a_{kj}$ { update } end end end

el T Heath

- Matrix rows need not be broadcast vertically, since any given column is contained entirely in only one process
- But there is no parallelism in computing multipliers or updating any given column
- Horizontal broadcasts still required to communicate multipliers for updating

Michael T. Heath Parallel Numerical Alg

1

1

$$T_{\text{comp}} \approx t_c \sum_{k=1}^{n-1} (n-k)^2 / p$$
$$\approx t_c n^3 / (3p)$$

Total execution time is

 $T_p \approx t_c n^3 / (3p) + 2 t_s n + t_w n^2 / \sqrt{p}$

To determine isoefficiency function, set

$$t_c n^3/3 \approx E (t_c n^3/3 + 2 t_s n p + t_w n^2 \sqrt{p})$$

which holds for large p if $n = \Theta(\sqrt{p})$, so isoefficiency function is $\Theta(p\sqrt{p})$, since $T_1 = \Theta(n^3)$

Michael T. Heath Parallel Numerical Alor

1

Parallel Algorithms for LU Scalability for 1-D Agglomeration

Michael T. Heath Parallel Numerical Alor

 $\approx 2t_s n + t_w n^2/\sqrt{p}$

where we have allowed for overlap of broadcasts for

- With either 1-D column or 1-D row agglomeration, updating by each process at step k requires about $(n-k)^2/p$ operations
- Summing over n-1 steps

successive steps

$$T_{\text{comp}} \approx t_c \sum_{k=1}^{n-1} (n-k)^2 / p$$
$$\approx t_c n^3 / (3p)$$

1

T

Scalability for 1-D Agglomeration

Parallel Algorithms for LU

Scalability for 1-D Agglomeration

Parallel Algorithms for LU

Total execution time is

 $T_p \approx t_c n^3 / (3p) + t_s n + t_w n^2 / 2$

To determine isoefficiency function, set

$$t_c n^3/3 \approx E (t_c n^3/3 + t_s n p + t_w n^2 p/2)$$

which holds for large p if $n = \Theta(p)$, so isoefficiency function is $\Theta(p^3)$, since $T_1 = \Theta(n^3)$

Partial pivoting yields factorization of form

PA = LU

where P is permutation matrix

• If PA = LU, then system Ax = b becomes

$$PAx = LUx = Pb$$

which can be solved by forward-substitution in lower triangular system Ly = Pb, followed by back-substitution in upper triangular system Ux = y

Parallel Numerical A

Partial Pivoting

Parallel Partial Pivoting

- With 1-D row algorithm, pivot search is parallel but requires communication among processes and inhibits overlapping of successive steps
- If rows are explicitly interchanged, then only two processes are involved
- If rows are implicitly interchanged, then mapping of rows to processes is altered, which may degrade concurrency and load balance
- Tradeoff between column and row algorithms with partial pivoting depends on relative speeds of communication and computation

Michael T. Heath Parallel Numerical Alg Igorithms for LU Partial Pivoting

Communication vs. Memory Tradeoff

- If explicit replication of storage is allowed, then lower communication volume is possible
- As with matrix multiplication, "2.5-D" algorithms have recently been developed that use partial storage replication to reduce communication volume to whatever extent available memory allows
- If sufficient memory is avaiable, then these algorithms can achieve provably optimal communication

ael T. Heath Parallel Numerical Alc

• Amount of data broadcast at step k is about n - k, so on 1-D mesh

$$T_{\text{comm}} \approx \sum_{k=1}^{n-1} (t_s + t_w (n-k))$$
$$\approx t_s n + t_w n^2/2$$

where we have allowed for overlap of broadcasts for successive steps

Partial Pivoting Partial Pivoting

- Row ordering of A is irrelevant in system of linear equations
- Partial pivoting takes rows in order of largest entry in magnitude of leading column of remaining unreduced matrix
- This choice ensures that multipliers do not exceed 1 in magnitude, which reduces amplification of rounding errors
- In general, partial pivoting is required to ensure existence and numerical stability of LU factorization

1 gorithms for LU Partial Pivoting

Parallel Partial Pivoting

- Partial pivoting complicates parallel implementation of Gaussian elimination and significantly affects potential performance
- With 2-D algorithm, pivot search is parallel but requires communication within process column and inhibits overlapping of successive steps
- With 1-D column algorithm, pivot search requires no communication but is purely serial
- Once pivot is found, index of pivot row must be communicated to other processes, and rows must be explicitly or implicitly interchanged in each process

1

Parallel Algorithms for LU Partial Pivoting

Alternatives to Partial Pivoting

· Because of negative effects of partial pivoting on parallel performance, various alternatives have been proposed that limit pivot search

Michael T. Heath Parallel Numerical Aloc

- tournament pivoting
- threshold pivoting
- pairwise pivoting
- Such strategies are not foolproof and may trade off some degree of stability and accuracy for speed
- Stability and accuracy may be recovered via iterative refinement, but this has its own cost

Michael T. Heath Parallel Numer

1

References

• J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, Acta Numerica 2:111-197, 1993

Parallel Algorithms for LU Partial Pivoting

- G. A. Geist and C. H. Romine, LU factorization algorithms on distributed-memory multiprocessor architectures, SIAM J. Sci. Stat. Comput. 9:639-649, 1988
- L. Grigori, J. Demmel, and H. Xiang, CALU: A communication optimal LU factorization algorithm, SIAM J. Matrix Anal. Appl. 32:1317-1350, 2011
- B. A. Hendrickson and D. E. Womble, The torus-wrap mapping for dense matrix calculations on massively parallel computers, SIAM J. Sci. Stat. Comput. 15:1201-1226, 1994

Michael T. Heath Parallel Numerical Algorithms

1

41/42

References

• J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, 1988

Parallel Algorithms for LU Partial Pivoting

- J. M. Ortega and C. H. Romine, The *ijk* forms of factorization methods II: parallel systems, Parallel Comput. 7:149-162, 1988
- Y. Robert, The Impact of Vector and Parallel Architectures on the Gaussian Elimination Algorithm, Wiley, 1990
- E. Solomonik and J. Demmel, Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms, 17th Euro-Par Conf. on Parallel Processing, LNCS 6853, Springer, 2011
- S. A. Vavasis, Gaussian elimination with pivoting is P-complete, SIAM J. Disc. Math. 2:413-423, 1989

Michael T. Heath Parallel Numerical Algorithms

T