
LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Parallel Numerical Algorithms
Chapter 6 – LU Factorization

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath Parallel Numerical Algorithms 1 / 42



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Outline

1 LU Factorization
Motivation
Gaussian Elimination

2 Parallel Algorithms for LU
Fine-Grain Algorithm
Agglomeration Schemes
Scalability

3 Partial Pivoting

Michael T. Heath Parallel Numerical Algorithms 2 / 42



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

LU Factorization

System of linear algebraic equations has form

Ax = b

where A is given n× n matrix, b is given n-vector, and x is
unknown solution n-vector to be computed

Direct method for solving general linear system is by
computing LU factorization

A = LU

where L is unit lower triangular and U is upper triangular
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LU Factorization

System Ax = b then becomes

LUx = b

Solve lower triangular system

Ly = b

by forward-substitution to obtain vector y

Finally, solve upper triangular system

Ux = y

by back-substitution to obtain solution x to original system
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Gaussian Elimination Algorithm

LU factorization can be computed by Gaussian elimination as
follows, where U overwrites A

for k = 1 to n− 1
for i = k + 1 to n

`ik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij − `ikakj

end
end

end

{ loop over columns }
{ compute multipliers

for current column }

{ apply transformation to
remaining submatrix }

Michael T. Heath Parallel Numerical Algorithms 5 / 42



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

Gaussian Elimination Algorithm

In general, row interchanges (pivoting) may be required to
ensure existence of LU factorization and numerical stability
of Gaussian elimination algorithm, but for simplicity we
temporarily ignore this issue

Gaussian elimination requires about n3/3 paired additions
and multiplications, so model serial time as

T1 = tc n
3/3

where tc is time required for multiply-add operation

About n2/2 divisions also required, but we ignore this
lower-order term
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Loop Orderings for Gaussian Elimination

Gaussian elimination has general form of triple-nested loop
in which entries of L and U overwrite those of A

for
for

for
aij = aij − (aik/akk) akj

end
end

end

Indices i, j, and k of for loops can be taken in any order,
for total of 3! = 6 different ways of arranging loops
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Loop Orderings for Gaussian Elimination

Different loop orders have different memory access
patterns, which may cause their performance to vary
widely, depending on architectural features such as cache,
paging, vector registers, etc.

Perhaps most promising for parallel implementation are kij
and kji forms, which differ only in accessing matrix by
rows or columns, respectively
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Gaussian Elimination Algorithm

kji form of Gaussian elimination

for k = 1 to n− 1
for i = k + 1 to n

`ik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij − `ik akj

end
end

end

Multipliers `ik computed outside inner loop for greater
efficiency

Michael T. Heath Parallel Numerical Algorithms 9 / 42



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes and stores{

uij , if i ≤ j
`ij , if i > j

yielding 2-D array of n2 fine-grain tasks

Communicate

Broadcast entries of A vertically to tasks below

Broadcast entries of L horizontally to tasks to right
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Fine-Grain Tasks and Communication
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Fine-Grain Parallel Algorithm

for k = 1 to min(i, j)− 1
recv broadcast of akj from task (k, j)
recv broadcast of `ik from task (i, k)
aij = aij − `ik akj

end
if i ≤ j then

broadcast aij to tasks (k, j), k = i + 1, . . . , n
else

recv broadcast of ajj from task (j, j)
`ij = aij/ajj
broadcast `ij to tasks (i, k), k = j + 1, . . . , n

end

{ vert bcast }
{ horiz bcast }
{ update entry }

{ vert bcast }

{ vert bcast }
{ multiplier }
{ horiz bcast }
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Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks
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2-D Agglomeration
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1-D Column Agglomeration
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1-D Row Agglomeration
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Mapping

Map

2-D: assign (n/k)2/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh
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2-D Agglomeration with Cyclic Mapping
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Coarse-Grain 2-D Parallel Algorithm

for k = 1 to n− 1
broadcast {akj : j ∈ mycols, j ≥ k} in process column
if k ∈ mycols then

for i ∈ myrows, i > k
`ik = aik/akk { multipliers }

end
end
broadcast {`ik : i ∈ myrows, i > k} in process row
for j ∈ mycols, j > k

for i ∈ myrows, i > k,
aij = aij − `ik akj { update }

end
end

end
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Performance Enhancements

Each process becomes idle as soon as its last row and
column are completed

With block mapping, in which each process holds
contiguous block of rows and columns, some processes
become idle long before overall computation is complete

Block mapping also yields unbalanced load, as computing
multipliers and updates requires successively less work
with increasing row and column numbers

Cyclic or reflection mapping improves both concurrency
and load balance
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Performance Enhancements

Performance can also be enhanced by overlapping
communication and computation

At step k, each process completes updating its portion of
remaining unreduced submatrix before moving on to step
k + 1

Broadcast of each segment of row k + 1, and computation
and broadcast of each segment of multipliers for step k + 1,
could be initiated as soon as relevant segments of row
k + 1 and column k + 1 have been updated by their owners,
before completing remainder of their updating for step k

This send ahead strategy enables other processes to start
working on next step earlier than they otherwise could
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1-D Column Agglomeration with Cyclic Mapping
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1-D Column Agglomeration

Matrix rows need not be broadcast vertically, since any
given column is contained entirely in only one process

But there is no parallelism in computing multipliers or
updating any given column

Horizontal broadcasts still required to communicate
multipliers for updating
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Coarse-Grain 1-D Column Parallel Algorithm

for k = 1 to n− 1
if k ∈ mycols then

for i = k + 1 to n
`ik = aik/akk

end
end
broadcast {`ik : k < i ≤ n}
for j ∈ mycols, j > k

for i = k + 1 to n
aij = aij − `ik akj

end
end

end

{ multipliers }

{ broadcast }

{ update }
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1-D Row Agglomeration with Cyclic Mapping
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1-D Row Agglomeration

Multipliers need not be broadcast horizontally, since any
given matrix row is contained entirely in only one process

But there is no parallelism in updating any given row

Vertical broadcasts still required to communicate each row
of matrix to processes below it for updating
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Coarse-Grain 1-D Row Parallel Algorithm

for k = 1 to n− 1
broadcast {akj : k ≤ j ≤ n}
for i ∈ myrows, i > k,

`ik = aik/akk
end
for j = k + 1 to n

for i ∈ myrows, i > k,
aij = aij − `ik akj

end
end

end

{ broadcast }

{ multipliers }

{ update }
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Performance Enhancements

Same performance enhancements as for 2-D
agglomeration apply to both 1-D column and 1-D row
agglomerations as well, including cyclic mapping and send
ahead strategy
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Scalability for 2-D Agglomeration

Updating by each process at step k requires about
(n− k)2/p operations

Summing over n− 1 steps

Tcomp ≈ tc

n−1∑
k=1

(n− k)2/p

≈ tc n
3/(3p)
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Scalability for 2-D Agglomeration

Similarly, amount of data broadcast at step k along each
process row and column is about (n− k)/

√
p, so on 2-D

mesh

Tcomm ≈
n−1∑
k=1

2(ts + tw (n− k)/
√
p )

≈ 2 ts n + tw n2/
√
p

where we have allowed for overlap of broadcasts for
successive steps
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Scalability for 2-D Agglomeration

Total execution time is

Tp ≈ tc n
3/(3p) + 2 ts n + tw n2/

√
p

To determine isoefficiency function, set

tc n
3/3 ≈ E (tc n

3/3 + 2 ts n p + tw n2√p )

which holds for large p if n = Θ(
√
p ), so isoefficiency

function is Θ(p
√
p ), since T1 = Θ(n3)
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Scalability for 1-D Agglomeration

With either 1-D column or 1-D row agglomeration, updating
by each process at step k requires about (n− k)2/p
operations

Summing over n− 1 steps

Tcomp ≈ tc

n−1∑
k=1

(n− k)2/p

≈ tc n
3/(3p)
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Scalability for 1-D Agglomeration

Amount of data broadcast at step k is about n− k, so on
1-D mesh

Tcomm ≈
n−1∑
k=1

(ts + tw (n− k))

≈ ts n + tw n2/2

where we have allowed for overlap of broadcasts for
successive steps
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Scalability for 1-D Agglomeration

Total execution time is

Tp ≈ tc n
3/(3p) + ts n + tw n2/2

To determine isoefficiency function, set

tc n
3/3 ≈ E (tc n

3/3 + ts n p + tw n2p/2)

which holds for large p if n = Θ(p), so isoefficiency function
is Θ(p3), since T1 = Θ(n3)

Michael T. Heath Parallel Numerical Algorithms 34 / 42



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Partial Pivoting

Row ordering of A is irrelevant in system of linear
equations

Partial pivoting takes rows in order of largest entry in
magnitude of leading column of remaining unreduced
matrix

This choice ensures that multipliers do not exceed 1 in
magnitude, which reduces amplification of rounding errors

In general, partial pivoting is required to ensure existence
and numerical stability of LU factorization
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Partial Pivoting

Partial pivoting yields factorization of form

PA = LU

where P is permutation matrix

If PA = LU , then system Ax = b becomes

PAx = LUx = Pb

which can be solved by forward-substitution in lower
triangular system Ly = Pb, followed by back-substitution
in upper triangular system Ux = y
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Parallel Partial Pivoting

Partial pivoting complicates parallel implementation of
Gaussian elimination and significantly affects potential
performance

With 2-D algorithm, pivot search is parallel but requires
communication within process column and inhibits
overlapping of successive steps

With 1-D column algorithm, pivot search requires no
communication but is purely serial

Once pivot is found, index of pivot row must be
communicated to other processes, and rows must be
explicitly or implicitly interchanged in each process
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Parallel Partial Pivoting

With 1-D row algorithm, pivot search is parallel but requires
communication among processes and inhibits overlapping
of successive steps

If rows are explicitly interchanged, then only two processes
are involved

If rows are implicitly interchanged, then mapping of rows to
processes is altered, which may degrade concurrency and
load balance

Tradeoff between column and row algorithms with partial
pivoting depends on relative speeds of communication and
computation
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Alternatives to Partial Pivoting

Because of negative effects of partial pivoting on parallel
performance, various alternatives have been proposed that
limit pivot search

tournament pivoting
threshold pivoting
pairwise pivoting

Such strategies are not foolproof and may trade off some
degree of stability and accuracy for speed

Stability and accuracy may be recovered via iterative
refinement, but this has its own cost
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Communication vs. Memory Tradeoff

If explicit replication of storage is allowed, then lower
communication volume is possible

As with matrix multiplication, “2.5-D” algorithms have
recently been developed that use partial storage
replication to reduce communication volume to whatever
extent available memory allows

If sufficient memory is avaiable, then these algorithms can
achieve provably optimal communication
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