

Parallel Numerical Algorithms

Chapter 5 - Vector and Matrix Products

Prof. Michael T. Heath
Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

- Basic Linear Algebra Subprograms (BLAS) are building blocks for many other matrix computations
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for particular computer architecture while high-level routines that call them remain portable
- BLAS offer good opportunities for optimizing utilization of memory hierarchy
- Generic BLAS are available from netlib, and many computer vendors provide custom versions optimized for their particular systems

Michael T. Heath Parallel Numerical Algorithms

- For problem of dimension n using p processes, assume p (or in some cases \sqrt{p}) divides n
- For 2-D mesh, assume p is perfect square and mesh is $\sqrt{p} \times \sqrt{p}$
- For hypercube, assume p is power of two
- Assume matrices are square, $n \times n$, not rectangular
- Dealing with general cases where these assumptions do not hold is straightforward but tedious, and complicates notation
- Caveat: your mileage may vary, depending on assumptions about target system, such as level of concurrency in communication

Partition

- For $i=1, \ldots, n$, fine-grain task i stores x_{i} and y_{i}, and computes their product $x_{i} y_{i}$

Communicate

- Sum reduction over n fine-grain tasks
Inner Product
(2) Outer Product
(3) Matrix-Vector Product
(4) Matrix-Matrix Product

Outline
,

Level	Work	Examples	Function		
1	$\mathcal{O}(n)$	saxpy	Scalar \times vector + vector		
		sdot	Inner product		
		snrm2	Euclidean vector norm		
2	$\mathcal{O}\left(n^{2}\right)$	sgemv	Matrix-vector product		
		strsv	Triangular solution		
		sger	Rank-one update		
3	$\mathcal{O}\left(n^{3}\right)$	sgemm 	Matrix-matrix product 		
		ssyrk			Multiple triang. solutions
:---	:---				
Rank- k update					

- Inner product of two n-vectors \boldsymbol{x} and \boldsymbol{y} given by

$$
\boldsymbol{x}^{T} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

- Computation of inner product requires n multiplications and $n-1$ additions
- For simplicity, model serial time as

$$
T_{1}=t_{c} n
$$

where t_{c} is time for one scalar multiply-add operation

Agglomerate

- Combine k components of both \boldsymbol{x} and \boldsymbol{y} to form each coarse-grain task, which computes inner product of these subvectors
- Communication becomes sum reduction over n / k coarse-grain tasks

Map

- Assign $(n / k) / p$ coarse-grain tasks to each of p processes, for total of n / p components of \boldsymbol{x} and \boldsymbol{y} per process

- Time for computation phase is

$$
T_{\text {comp }}=t_{c} n / p
$$

regardless of network

- Depending on network, time for communication phase is
- 1-D mesh: $T_{\text {comm }}=\left(t_{s}+t_{w}\right)(p-1)$
- 2-D mesh: $T_{\text {comm }}=\left(t_{s}+t_{w}\right) 2(\sqrt{p}-1)$
- hypercube: $T_{\text {comm }}=\left(t_{s}+t_{w}\right) \log p$
- For simplicity, ignore cost of additions in reduction, which is usually negligible

- For 2-D mesh, total time is

$$
T_{p}=t_{c} n / p+\left(t_{s}+t_{w}\right) 2(\sqrt{p}-1)
$$

- To determine isoefficiency function, set

$$
t_{c} n \approx E\left(t_{c} n+\left(t_{s}+t_{w}\right) p 2(\sqrt{p}-1)\right)
$$

which holds if $n=\Theta\left(p^{3 / 2}\right)$, so isoefficiency function is $\Theta\left(p^{3 / 2}\right)$, since $T_{1}=\Theta(n)$

- To determine optimal number of processes for given n, take p to be continuous variable and minimize T_{p} with respect to p
- For 1-D mesh

$$
\begin{aligned}
T_{p}^{\prime} & =\frac{d}{d p}\left[t_{c} n / p+\left(t_{s}+t_{w}\right)(p-1)\right] \\
& =-t_{c} n / p^{2}+\left(t_{s}+t_{w}\right)=0
\end{aligned}
$$

implies that optimal number of processes is

$$
p \approx \sqrt{\frac{t_{c} n}{t_{s}+t_{w}}}
$$

- If $n<\left(t_{s}+t_{w}\right) / t_{c}$, then only one process should be used
- Substituting optimal p into formula for T_{p} shows that optimal time to compute inner product grows as \sqrt{n} with increasing n on 1-D mesh
$z=\boldsymbol{x}_{[i]}^{T} \boldsymbol{y}_{[i]}$
reduce z across all processes
\{ local inner product \}
\{ sum reduction \}
[$\boldsymbol{x}_{[i]}$ means subvector of x assigned to process i by mapping $]$
- For 1-D mesh, total time is

$$
T_{p}=t_{c} n / p+\left(t_{s}+t_{w}\right)(p-1)
$$

- To determine isoefficiency function, set

$$
\begin{aligned}
T_{1} & \approx E\left(p T_{p}\right) \\
t_{c} n & \approx E\left(t_{c} n+\left(t_{s}+t_{w}\right) p(p-1)\right)
\end{aligned}
$$

which holds if $n=\Theta\left(p^{2}\right)$, so isoefficiency function is $\Theta\left(p^{2}\right)$, since $T_{1}=\Theta(n)$

- For hypercube, total time is

$$
T_{p}=t_{c} n / p+\left(t_{s}+t_{w}\right) \log p
$$

- To determine isoefficiency function, set

$$
t_{c} n \approx E\left(t_{c} n+\left(t_{s}+t_{w}\right) p \log p\right)
$$

which holds if $n=\Theta(p \log p)$, so isoefficiency function is $\Theta(p \log p)$, since $T_{1}=\Theta(n)$

- For hypercube

$$
\begin{aligned}
T_{p}^{\prime} & =\frac{d}{d p}\left[t_{c} n / p+\left(t_{s}+t_{w}\right) \log p\right] \\
& =-t_{c} n / p^{2}+\left(t_{s}+t_{w}\right) / p=0
\end{aligned}
$$

implies that optimal number of processes is

$$
p \approx \frac{t_{c} n}{t_{s}+t_{w}}
$$

and optimal time grows as $\log n$ with increasing n

Partition

- For $i, j=1, \ldots, n$, fine-grain task (i, j) computes and stores $z_{i j}=x_{i} y_{j}$, yielding 2-D array of n^{2} fine-grain tasks
- Assuming no replication of data, at most $2 n$ fine-grain tasks store components of x and y, say either
- for some j, task (i, j) stores x_{i} and task (j, i) stores y_{i}, or
- task (i, i) stores both x_{i} and $y_{i}, i=1, \ldots, n$

Communicate

- For $i=1, \ldots, n$, task that stores x_{i} broadcasts it to all other tasks in i th task row
- For $j=1, \ldots, n$, task that stores y_{j} broadcasts it to all other tasks in j th task column

broadcast x_{i} to tasks $(i, k), k=1, \ldots, n$	\{ horizontal broadcast \}
broadcast y_{j} to tasks $(k, j), k=1, \ldots, n$	$\{$ vertical broadcast $\}$
$z_{i j}=x_{i} y_{j}$	$\{$ local scalar product $\}$

- Each task that stores portion of x must broadcast its subvector to all other tasks in its task row
- Each task that stores portion of \boldsymbol{y} must broadcast its subvector to all other tasks in its task column

- Outer product of two n-vectors \boldsymbol{x} and \boldsymbol{y} is $n \times n$ matrix $\boldsymbol{Z}=\boldsymbol{x}^{T}$ whose (i, j) entry $z_{i j}=x_{i} y_{j}$
- For example,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

- Computation of outer product requires n^{2} multiplications, so model serial time as

$$
T_{1}=t_{c} n^{2}
$$

where t_{c} is time for one scalar multiplication

Michael T. Heath Parallel Numerical Algorithms

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n / k)^{2}$ coarse-grain tasks
- 1-D column: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath Parallel Numerical Algorithms

- If either x or y stored in one task, then broadcast required to communicate needed values to all other tasks
- If either x or y distributed across tasks, then multinode broadcast required to communicate needed values to other tasks

I

Michael T. Heath Parallel Numerical Algorithms

- Time for computation phase is

$$
T_{\text {comp }}=t_{c} n^{2} / p
$$

regardless of network or agglomeration scheme

- For 2-D agglomeration on 2-D mesh, communication time is at least

$$
T_{\mathrm{comm}}=\left(t_{s}+t_{w} n / \sqrt{p}\right)(\sqrt{p}-1)
$$

assuming broadcasts can be overlapped

- Total time for hypercube is at least

$$
\begin{aligned}
T_{p} & =t_{c} n^{2} / p+\left(t_{s}+t_{w} n / \sqrt{p}\right)(\log p) / 2 \\
& =t_{c} n^{2} / p+t_{s}(\log p) / 2+t_{w} n(\log p) /(2 \sqrt{p})
\end{aligned}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{2} \approx E\left(t_{c} n^{2}+t_{s} p(\log p) / 2+t_{w} n \sqrt{p}(\log p) / 2\right)
$$

which holds for large p if $n=\Theta(\sqrt{p} \log p)$, so isoefficiency
function is $\Theta\left(p(\log p)^{2}\right)$, since $T_{1}=\Theta\left(n^{2}\right)$

- For 1-D mesh, total time is at least

$$
\begin{aligned}
T_{p} & =t_{c} n^{2} / p+\left(t_{s}+t_{w} n / p\right)(p-1) \\
& \approx t_{c} n^{2} / p+t_{s} p+t_{w} n
\end{aligned}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{2} \approx E\left(t_{c} n^{2}+t_{s} p^{2}+t_{w} n p\right)
$$

which holds if $n=\Theta(p)$, so isoefficiency function is $\Theta\left(p^{2}\right)$, since $T_{1}=\Theta\left(n^{2}\right)$

- Consider matrix-vector product

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

where \boldsymbol{A} is $n \times n$ matrix and \boldsymbol{x} and \boldsymbol{y} are n-vectors

- Components of vector \boldsymbol{y} are given by

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
$$

- Each of n components requires n multiply-add operations, so model serial time as

- Total time for 2-D mesh is at least

$$
\begin{aligned}
T_{p} & =t_{c} n^{2} / p+\left(t_{s}+t_{w} n / \sqrt{p}\right)(\sqrt{p}-1) \\
& \approx t_{c} n^{2} / p+t_{s} \sqrt{p}+t_{w} n
\end{aligned}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{2} \approx E\left(t_{c} n^{2}+t_{s} p^{3 / 2}+t_{w} n p\right)
$$

which holds for large p if $n=\Theta(p)$, so isoefficiency function is $\Theta\left(p^{2}\right)$, since $T_{1}=\Theta\left(n^{2}\right)$

\qquad
Michael T. Heath
Parallel Numerical Algorithms

Michael T. Heath	Parallel Numerical Algorithms	$34 / 81$
	Parallel Algorithm Aggiomeration Schemes Scalability	
Scalability for 1-D mesh		

- Depending on network, time for communication phase with 1-D agglomeration is at least
- 1-D mesh: $T_{\text {comm }}=\left(t_{s}+t_{w} n / p\right)(p-1)$
- 2-D mesh: $T_{\text {comm }}=\left(t_{s}+t_{w} n / p\right) 2(\sqrt{p}-1)$
- hypercube: $T_{\text {comm }}=\left(t_{s}+t_{w} n / p\right) \log p$
assuming broadcasts can be overlapped

- With either 1-D or 2-D algorithm, straightforward broadcasting of x or y could require as much total memory as replication of entire vector in all processes
- Memory requirements can be reduced by circulating portions of \boldsymbol{x} or \boldsymbol{y} through processes in ring fashion, with each process using each portion as it passes through, so that no process need store entire vector at once

Partition

- For $i, j=1, \ldots, n$, fine-grain task (i, j) stores $a_{i j}$ and computes $a_{i j} x_{j}$, yielding 2-D array of n^{2} fine-grain tasks
- Assuming no replication of data, at most $2 n$ fine-grain tasks store components of \boldsymbol{x} and \boldsymbol{y}, say either
- for some j, task (j, i) stores x_{i} and task (i, j) stores y_{i}, or
- task (i, i) stores both x_{i} and $y_{i}, i=1, \ldots, n$

Communicate

- For $j=1, \ldots, n$, task that stores x_{j} broadcasts it to all other tasks in j th task column
- For $i=1, \ldots, n$, sum reduction over i th task row gives y_{i} II

Fine-Grain Tasks and Communication

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n / k)^{2}$ coarse-grain tasks
- 1-D column: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

Fine-Grain Parallel Algorithm
broadcast x_{j} to tasks $(k, j), k=1, \ldots, n \quad\{$ vertical broadcast $\}$

$$
\begin{array}{ll}
y_{i}=a_{i j} x_{j} & \{\text { local scalar product }\} \\
\text { reduce } y_{i} \text { across tasks }(i, k), k=1, \ldots, n & \text { \{ horizontal sum reduction }\}
\end{array}
$$

- Subvector of x broadcast along each task column
- Each task computes local matrix-vector product of submatrix of \boldsymbol{A} with subvector of \boldsymbol{x}
- Sum reduction along each task row produces subvector of result \boldsymbol{y}

1-D column agglomeration

- Each task computes product of its component of \boldsymbol{x} times its column of matrix, with no communication required
- Sum reduction across tasks then produces y

1-D row agglomeration

- If \boldsymbol{x} stored in one task, then broadcast required to communicate needed values to all other tasks
- If \boldsymbol{x} distributed across tasks, then multinode broadcast required to communicate needed values to other tasks
- Each task computes inner product of its row of \boldsymbol{A} with entire vector x to produce its component of y

Column and row algorithms are dual to each other

- Column algorithm begins with communication-free local saxpy computations followed by sum reduction
- Row algorithm begins with broadcast followed by communication-free local sdot computations

- Time for computation phase is

$$
T_{\text {comp }}=t_{c} n^{2} / p
$$

regardless of network or agglomeration scheme

- For 2-D agglomeration on 2-D mesh, each of two communication phases requires time

$$
\left(t_{s}+t_{w} n / \sqrt{p}\right)(\sqrt{p}-1) \approx t_{s} \sqrt{p}+t_{w} n
$$

so total time is

$$
T_{p} \approx t_{c} n^{2} / p+2\left(t_{s} \sqrt{p}+t_{w} n\right)
$$

Map

- 2-D: Assign $(n / k)^{2} / p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n / p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

Michael T. Heath Parallel Numerical Algorithms
52/81

broadcast $x_{[j]}$ to j th process column $\quad\{$ vertical broadcast \}
$\boldsymbol{y}_{[i]}=\boldsymbol{A}_{[i][j]} \boldsymbol{x}_{[j]}$
reduce $\boldsymbol{y}_{[i]}$ across i th process row
\{ local matrix-vector product \}
\{ horizontal sum reduction \}

- To determine isoefficiency function, set

$$
t_{c} n^{2} \approx E\left(t_{c} n^{2}+2\left(t_{s} p^{3 / 2}+t_{w} n p\right)\right)
$$

which holds if $n=\Theta(p)$, so isoefficiency function is $\Theta\left(p^{2}\right)$, since $T_{1}=\Theta\left(n^{2}\right)$

- Total time for hypercube is

$$
\begin{aligned}
T_{p} & =t_{c} n^{2} / p+\left(t_{s}+t_{w} n / \sqrt{p}\right) \log p \\
& =t_{c} n^{2} / p+t_{s} \log p+t_{w} n(\log p) / \sqrt{p}
\end{aligned}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{2} \approx E\left(t_{c} n^{2}+t_{s} p \log p+t_{w} n \sqrt{p} \log p\right)
$$

which holds for large p if $n=\Theta(\sqrt{p} \log p)$, so isoefficiency function is $\Theta\left(p(\log p)^{2}\right)$, since $T_{1}=\Theta\left(n^{2}\right)$

- To determine isoefficiency function, set

$$
t_{c} n^{2} \approx E\left(t_{c} n^{2}+t_{s} p^{2}+t_{w} n p\right)
$$

which holds if $n=\Theta(p)$, so isoefficiency function is $\Theta\left(p^{2}\right)$, since $T_{1}=\Theta\left(n^{2}\right)$

- Matrix-matrix product can be viewed as
- n^{2} inner products, or
- sum of n outer products, or
- n matrix-vector products
and each viewpoint yields different algorithm
- One way to derive parallel algorithms for matrix-matrix product is to apply parallel algorithms already developed for inner product, outer product, or matrix-vector product
- We will develop parallel algorithms for this problem directly, however

Communicate

- Broadcast entries of j th column of \boldsymbol{A} horizontally along each task row in j th layer
- Broadcast entries of i th row of B vertically along each task column in i th layer
- For $i, j=1, \ldots, n$, result $c_{i j}$ is given by sum reduction over tasks $(i, j, k), k=1, \ldots, n$
- Depending on network, time for communication phase with 1-D agglomeration is at least
- 1-D mesh: $T_{\text {comm }}=\left(t_{s}+t_{w} n / p\right)(p-1)$
- 2-D mesh: $T_{\text {comm }}=\left(t_{s}+t_{w} n / p\right) 2(\sqrt{p}-1)$
- hypercube: $T_{\text {comm }}=\left(t_{s}+t_{w} n / p\right) \log p$
- For 1-D agglomeration on 1-D mesh, total time is at least

$$
\begin{aligned}
T_{p} & =t_{c} n^{2} / p+\left(t_{s}+t_{w} n / p\right)(p-1) \\
& \approx t_{c} n^{2} / p+t_{s} p+t_{w} n
\end{aligned}
$$

- Consider matrix-matrix product

$$
C=A B
$$

where $\boldsymbol{A}, \boldsymbol{B}$, and result \boldsymbol{C} are $n \times n$ matrices

- Entries of matrix C are given by

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}, \quad i, j=1, \ldots, n
$$

- Each of n^{2} entries of \boldsymbol{C} requires n multiply-add operations, so model serial time as

Partition

- For $i, j, k=1, \ldots, n$, fine-grain task (i, j, k) computes product $a_{i k} b_{k j}$, yielding 3-D array of n^{3} fine-grain tasks
- Assuming no replication of data, at most $3 n^{2}$ fine-grain tasks store entries of $\boldsymbol{A}, \boldsymbol{B}$,
 or \boldsymbol{C}, say task (i, j, j) stores $a_{i j}$, task (i, j, i) stores $b_{i j}$, and task (i, j, k) stores $c_{i j}$ for $i, j=1, \ldots, n$ and some fixed k
- We refer to subsets of tasks along i, j, and k dimensions as rows, columns, and layers, respectively, so k th column of \boldsymbol{A} and k th row of \boldsymbol{B} are stored in k th layer of tasks

	Inner Product Outer Product Matrix V-Vcor Product Matrix-Matrix Product	Parallel Algorithm Agglomeration Schemes Scalability
Fine-Grain Algorithm		

broadcast $a_{i k}$ to tasks $(i, q, k), q=1, \ldots, n \quad\{$ horizontal broadcast $\}$ broadcast $b_{k j}$ to tasks $(q, j, k), q=1, \ldots, n \quad\{$ vertical broadcast $\}$ $c_{i j}=a_{i k} b_{k j}$
\{ local scalar product \} reduce $c_{i j}$ across tasks $(i, j, q), q=1, \ldots, n \quad$ \{ lateral sum reduction $\}$

Agglomerate

With $n \times n \times n$ array of fine-grain tasks, natural strategies are

- 3-D: Combine $q \times q \times q$ subarray of fine-grain tasks
- 2-D: Combine $q \times q \times n$ subarray of fine-grain tasks, eliminating sum reductions
- 1-D column: Combine $n \times 1 \times n$ subarray of fine-grain tasks, eliminating vertical broadcasts and sum reductions
- 1-D row: Combine $1 \times n \times n$ subarray of fine-grain tasks, eliminating horizontal broadcasts and sum reductions

- Algorithm just described requires excessive memory, since each process accumulates \sqrt{p} blocks of both \boldsymbol{A} and \boldsymbol{B}
- One way to reduce memory requirements is to
- broadcast blocks of \boldsymbol{A} successively across process rows, and
- circulate blocks of B in ring fashion vertically along process columns
step by step so that each block of B comes in conjunction with appropriate block of \boldsymbol{A} broadcast at that same step
- This algorithm is due to Fox et al.

Map
Corresponding mapping strategies are

- 3-D: Assign $(n / q)^{3} / p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 3-D mesh
- 2-D: Assign $(n / q)^{2} / p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n / p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh
Coarse-Grain 3-D Parallel Algorithm

broadcast $\boldsymbol{A}_{[i][k]}$ to i th process row	\{horizontal broadcast \}
broadcast $\boldsymbol{B}_{[k][j]}$ to j th process column	\{vertical broadcast \}
$\boldsymbol{C}_{[i][j]}=\boldsymbol{A}_{[i][k]} \boldsymbol{B}_{[k][j]}$	$\{$ local matrix product $\}$
reduce $\boldsymbol{C}_{[i][j]}$ across process layers	\{lateral sum reduction \}

Mcheel T Heanh	Paralel Numeicalal Alooriths	68/81
	Parallel Algorithm Agglomeration Schemes Scalability	
Coarse-Grain 2-D Parallel	Algorithm	

all-to-all bcast $\boldsymbol{A}_{[i][j]}$ in ith process row $\quad\{$ horizontal broadcast \} all-to-all bcast $\boldsymbol{B}_{[i][j]}$ in j th process column \quad \{ vertical broadcast \}
$C_{[i][j]}=\boldsymbol{O}$
for $k=1, \ldots, \sqrt{p}$
$\boldsymbol{C}_{[i][j]}=\boldsymbol{C}_{[i][j]}+\boldsymbol{A}_{[i][k]} \boldsymbol{B}_{[k][j]} \quad$ \{sum local products \}
end

Inner Product Outer Product Matrix-Vector Product Matrix-Matrix Product	Parallel Algorithm Agglomeration Schemes Scalability
Cannon Algorithm	

- Another approach, due to Cannon, is to circulate blocks of \boldsymbol{B} vertically and blocks of \boldsymbol{A} horizontally in ring fashion
- Blocks of both matrices must be initially aligned using circular shifts so that correct blocks meet as needed
- Requires even less memory than Fox algorithm, but trickier to program because of shifts required
- Performance and scalability of Fox and Cannon algorithms are not significantly different from that of previous 2-D algorithm, but memory requirements are much less

- For 3-D agglomeration, computing each of p blocks $C_{[i][j]}$ requires matrix-matrix product of two $(n / \sqrt[3]{p}) \times(n / \sqrt[3]{p})$ blocks, so

$$
T_{\mathrm{comp}}=t_{c}(n / \sqrt[3]{p})^{3}=t_{c} n^{3} / p
$$

- On 3-D mesh, each broadcast or reduction takes time

$$
\left(t_{s}+t_{w}(n / \sqrt[3]{p})^{2}\right)(\sqrt[3]{p}-1) \approx t_{s} p^{1 / 3}+t_{w} n^{2} / p^{1 / 3}
$$

- Total time is therefore

$$
T_{p}=t_{c} n^{3} / p+3 t_{s} p^{1 / 3}+3 t_{w} n^{2} / p^{1 / 3}
$$

- For 2-D agglomeration, computation of each block $C_{[i][j]}$ requires \sqrt{p} matrix-matrix products of $(n / \sqrt{p}) \times(n / \sqrt{p})$ blocks, so

$$
T_{\text {comp }}=t_{c} \sqrt{p}(n / \sqrt{p})^{3}=t_{c} n^{3} / p
$$

- For 2-D mesh, communication time for broadcasts along rows and columns is

$$
\begin{aligned}
T_{\mathrm{comm}} & =\left(t_{s}+t_{w} n^{2} / p\right)(\sqrt{p}-1) \\
& \approx t_{s} \sqrt{p}+t_{w} n^{2} / \sqrt{p}
\end{aligned}
$$

assuming horizontal and vertical broadcasts can overlap (multiply by two otherwise)

Michael T. Heath Parallel Numerical Algorithms

- For 1-D agglomeration on 1-D mesh, total time is

$$
\begin{aligned}
T_{p} & =t_{c} n^{3} / p+\left(t_{s}+t_{w} n^{2} / p\right)(p-1) \\
& \approx t_{c} n^{3} / p+t_{s} p+t_{w} n^{2}
\end{aligned}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{3} \approx E\left(t_{c} n^{3}+t_{s} p^{2}+t_{w} n^{2} p\right)
$$

which holds for large p if $n=\Theta(p)$, so isoefficiency function is $\Theta\left(p^{3}\right)$ since $T_{1}=\Theta\left(n^{3}\right)$

- R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, A three-dimensional approach to parallel matrix multiplication, IBM J. Res. Dev., 39:575-582, 1995
- J. Berntsen, Communication efficient matrix multiplication on hypercubes, Parallel Comput. 12:335-342, 1989
- J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger, Communication-optimal parallel recursive rectangular matrix multiplication, IPDPS, 2013
- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, Acta Numerica 2:111-197, 1993
- To determine isoefficiency function, set

$$
t_{c} n^{3} \approx E\left(t_{c} n^{3}+3 t_{s} p^{4 / 3}+3 t_{w} n^{2} p^{2 / 3}\right)
$$

which holds for large p if $n=\Theta\left(p^{2 / 3}\right)$, so isoefficiency function is $\Theta\left(p^{2}\right)$, since $T_{1}=\Theta\left(n^{3}\right)$

- For hypercube, total time becomes

$$
T_{p}=t_{c} n^{3} / p+t_{s} \log p+t_{w} n^{2}(\log p) / p^{2 / 3}
$$

which leads to isoefficiency function of $\Theta\left(p(\log p)^{3}\right)$

- Total time for 2-D mesh is

$$
T_{p} \approx t_{c} n^{3} / p+t_{s} \sqrt{p}+t_{w} n^{2} / \sqrt{p}
$$

- To determine isoefficiency function, set

$$
t_{c} n^{3} \approx E\left(t_{c} n^{3}+t_{s} p^{3 / 2}+t_{w} n^{2} \sqrt{p}\right)
$$

which holds for large p if $n=\Theta(\sqrt{p})$, so isoefficiency function is $\Theta\left(p^{3 / 2}\right)$, since $T_{1}=\Theta\left(n^{3}\right)$

- Communication volume for 2-D algorithms for matrix-matrix product is optimal, assuming no replication of storage
- If explicit replication of storage is allowed, then lower communication volume is possible
- Block-recursive 3-D algorithm can reduce communication volume by factor of $p^{-1 / 6}$ while increasing memory usage by factor of $p^{1 / 3}$
- Recently, "2.5-D" algorithms have been developed that interpolate between 2-D and 3-D algorithms, using partial storage replication to reduce communication volume to whatever extent available memory allows
- R. Dias da Cunha, A benchmark study based on the parallel computation of the vector outer-product $A=u v^{T}$ operation, Concurrency: Practice and Experience 9:803-819, 1997
- G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms on a hypercube I: matrix multiplication, Parallel Comput. 4:17-31, 1987
- D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory matrix multiplication, J. Parallel Distrib. Comput. 64:1017-1026, 2004.
- S. L. Johnsson, Communication efficient basic linear algebra computations on hypercube architectures, J. Parallel Distrib. Comput. 4(2):133-172, 1987

References

- S. L. Johnsson, Minimizing the communication time for matrix multiplication on multiprocessors, Parallel Comput. 19:1235-1257, 1993
- B. Lipshitz, Communication-avoiding parallel recursive algorithms for matrix multiplication, Tech. Rept.
UCB/EECS-2013-100, University of California at Berkeley, May 2013.
- O. McBryan and E. F. Van de Velde, Matrix and vector operations on hypercube parallel processors, Parallel Comput. 5:117-126, 1987
- R. A. Van De Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algorithm, Concurrency: Practice and Experience 9(4):255-274, 1997

