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Basic Linear Algebra Subprograms

@ Basic Linear Algebra Subprograms (BLAS) are building
blocks for many other matrix computations

@ BLAS encapsulate basic operations on vectors and
matrices so they can be optimized for particular computer
architecture while high-level routines that call them remain
portable

@ BLAS offer good opportunities for optimizing utilization of
memory hierarchy

@ Generic BLAS are available from net1ib, and many
computer vendors provide custom versions optimized for
their particular systems 1
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Examples of BLAS

Level Work Examples Function

1 O(n) saxpy Scalar x vector + vector
sdot Inner product
snrm2 Euclidean vector norm

2 O(n?) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 0O sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-% update
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Simplifying Assumptions

@ For problem of dimension n using p processes, assume p
(or in some cases ,/p) divides n

@ For 2-D mesh, assume p is perfect square and mesh is
VP X /P

@ For hypercube, assume p is power of two

@ Assume matrices are square, n x n, not rectangular

@ Dealing with general cases where these assumptions do
not hold is straightforward but tedious, and complicates
notation

@ Caveat: your mileage may vary, depending on
assumptions about target system, such as level of

concurrency in communication 1
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Inner Product Parallel Algorithm

Scalability
Optimality

Inner Product

@ Inner product of two n-vectors x and y given by

n
aly = Z i Yi
=1
@ Computation of inner product requires n multiplications
and n — 1 additions
@ For simplicity, model serial time as
T1 = tcn

where t. is time for one scalar multiply-add operation 1
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Inner Product Parallel Algorithm

Scalability
Optimality

Parallel Algorithm

Partition

@ Fori=1,...,n, fine-grain task i stores z; and y;, and
computes their product z; y;

Communicate

@ Sum reduction over n fine-grain tasks

-G
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Inner Product Parallel Algorithm

Scalability
Optimality

Fine-Grain Parallel Algorithm

Z = XY { local scalar product }

reduce z across all tasks { sum reduction }

1
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Inner Product Parallel Algorithm

Scalability
Optimality

Agglomeration and Mapping

Agglomerate

@ Combine k components of both « and y to form each
coarse-grain task, which computes inner product of these
subvectors

@ Communication becomes sum reduction over n/k
coarse-grain tasks

Map

@ Assign (n/k)/p coarse-grain tasks to each of p processes,
for total of n/p components of « and y per process

(2) ) o) () (o) () ()
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Inner Product Parallel Algorithm

Scalability
Optimality

Coarse-Grain Parallel Algorithm

z = az[jg}y[i] { local inner product }

reduce =z across all processes { sum reduction }

[:z:m means subvector of  assigned to process i by mapping]
I
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Inner Product Parallel Algorithm

Scalability
Optimality

Performance

@ Time for computation phase is
Tcomp =t n/p

regardless of network

@ Depending on network, time for communication phase is
e 1-D mesh: Teomm = (ts +tw) (p — 1)
@ 2-D mesh: Teomm = (ts + tw) 2(y/p — 1)
e hypercube: Teomm = (ts + tw) logp

@ For simplicity, ignore cost of additions in reduction, which is
usually negligible T
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Inner Product Parallel Algorithm

Scalability
Optimality

Scalability for 1-D Mesh

@ For 1-D mesh, total time is
Ty =ten/p+ (ts+tw) (p—1)
@ To determine isoefficiency function, set

W~ E(pT))
ten &~ E(ten+ (ts+tw)p(p—1))

which holds if n = ©(p?), so isoefficiency function is ©(p?),
since 71 = O(n)

1
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Inner Product Parallel Algorithm

Scalability
Optimality

Scalability for 2-D Mesh

@ For 2-D mesh, total time is
Ty =ten/p+ (ts +tw) 2(v/p— 1)
@ To determine isoefficiency function, set
ten~ E(ten+ (ts +tw)p 2(y/p — 1))

which holds if n = ©(p*/?), so isoefficiency function is
O(p*/?), since T1 = O(n)

I
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Inner Product Parallel Algorithm

Scalability
Optimality

Scalability for Hypercube

@ For hypercube, total time is
Tp =ten/p+ (ts +ty) logp
@ To determine isoefficiency function, set
ten =~ E (ten + (ts + tw) p logp)

which holds if n = O(p log p), so isoefficiency function is
©(p logp), since Ty = O(n)

I
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Inner Product Parallel Algorithm

Scalability
Optimality

Optimality for 1-D Mesh

@ To determine optimal number of processes for given n,

take p to be continuous variable and minimize 7}, with
respect to p

@ For 1-D mesh

d
/ —_— p—
1y = len/p+ (1t t) (0= 1)
= —ten/p*+ (ts +tw) =0
implies that optimal number of processes is

ten
ts + tw

PR
T
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Inner Product Parallel Algorithm

Scalability
Optimality

Optimality for 1-D Mesh

@ If n < (ts + tw)/tc, then only one process should be used

@ Substituting optimal p into formula for 7;, shows that
optimal time to compute inner product grows as /n with
increasing n on 1-D mesh

1
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Inner Product Parallel Algorithm

Scalability
Optimality

Optimality for Hypercube

@ For hypercube

d
T, = o [tcn/p + (ts + tw) logp
= —t.n/p*+ (ts+ty)/p=0
implies that optimal number of processes is

ten
ts + tw

p%

and optimal time grows as log n with increasing n
T
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Outer Product

@ Outer product of two n-vectors x and y is n x n matrix
Z = xy’ whose (i, j) entry z;; = x; y;

@ For example,

T
x1 Y1 T1Y1 T1Y2 T1Y3
X2 Y2 = |X2Y1 T2Y2 T2Y3
x3 Y3 T3Yyir T3Y2 I3Y3

@ Computation of outer product requires n? multiplications,
so model serial time as

where t. is time for one scalar multiplication 1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Parallel Algorithm

Partition

@ Fori,j=1,...,n,fine-grain task (i, j) computes and
stores z;; = z; y;, yielding 2-D array of n? fine-grain tasks
@ Assuming no replication of data, at most 2n fine-grain
tasks store components of « and y, say either
o for some j, task (i, j) stores z; and task ( j,¢) stores y;, or
o task (i,7) stores both z; and y;, i = 1,...,n

Communicate

@ Fori=1,...,n,task that stores x; broadcasts it to all other
tasks in ith task row

@ Forj =1,...,n, task that stores y; broadcasts it to all

other tasks in jth task column 1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Fine-Grain Tasks and Communication

S
eeer

SRRSO 1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Fine-Grain Parallel Algorithm

broadcast z; to tasks (i, k), k=1,...,n { horizontal broadcast }
broadcast y; to tasks (k,j), k=1,...,n  { vertical broadcast }

Zij = Tiyj { local scalar product }

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Agglomeration

Agglomerate

With n x n array of fine-grain tasks, natural strategies are

@ 2-D: Combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration

@ Each task that stores portion of « must broadcast its
subvector to all other tasks in its task row

@ Each task that stores portion of y must broadcast its
subvector to all other tasks in its task column

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

1-D Agglomeration

@ If either x or y stored in one task, then broadcast required
to communicate needed values to all other tasks

@ If either x or y distributed across tasks, then multinode
broadcast required to communicate needed values to other
tasks

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

1-D Column Agglomeration
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

1-D Row Agglomeration
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Mapping

Map

@ 2-D: Assign (n/k)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration with Block Mapping
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Outer Product

1-D Column Agglomeration with Block Mapping

Parallel Algorithm

Agglomeration Schemes
Scalability

Y
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

1-D Row Agglomeration with Block Mapping
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Coarse-Grain Parallel Algorithm

broadcast x;) to ith process row { horizontal broadcast }
broadcast y| ;; to jth process column { vertical broadcast }

Zi) = w[i]y[j;'} { local outer product }

[Z;)1;) means submatrix of Z assigned to process (i, ) by
mapping | 1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Scalability

@ Time for computation phase is
Tcomp =t n2/p
regardless of network or agglomeration scheme

@ For 2-D agglomeration on 2-D mesh, communication time
is at least

Teomm = (ts + tw n/\/ﬁ) (\/ﬁ_ 1)

assuming broadcasts can be overlapped
I
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Scalability for 2-D Mesh

@ Total time for 2-D mesh is at least

T, = ten®/p+(ts+twn/vp)(Vp—1)
~ tcnz/p—I—ts\/fo—i—twn

@ To determine isoefficiency function, set
ten? = E (ten® 4+ tsp*/? + tynp)

which holds for large p if n = O(p), so isoefficiency function
is ©(p?), since Ty = O(n?)

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Scalability for Hypercube

@ Total time for hypercube is at least

T, = ten?/p+(ts+twn/yp) (logp)/2

= ten?/p+ts(logp)/2 + twn (logp)/(2y/p)
@ To determine isoefficiency function, set
ten’~ F (te n?+tsp (log p)/2 + tyn+/p (logp)/2)

which holds for large p if n = ©(,/p log p), so isoefficiency
function is ©(p (log p)?), since T} = O(n?)

1

Michael T. Heath Parallel Numerical Algorithms



Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Scalability for 1-D mesh

@ Depending on network, time for communication phase with
1-D agglomeration is at least

o 1-D mesh: Toomm = (ts +twn/p) (p— 1)

o 2-D mesh: Teomm = (ts + twn/p)2(/p— 1)

e hypercube: Tiomm = (ts + twn/p) logp
assuming broadcasts can be overlapped
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Scalability for 1-D Mesh

@ For 1-D mesh, total time is at least

T, = ten?/p+(ts+twn/p)(p—1)
ten®/p+tsp+tun

Q

@ To determine isoefficiency function, set
ten? ~ E(tcn2 + top? +tynp)

which holds if n = ©(p), so isoefficiency function is ©(p?),
since 71 = O(n?)

1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Memory Requirements

@ With either 1-D or 2-D algorithm, straightforward
broadcasting of « or y could require as much total memory
as replication of entire vector in all processes

@ Memory requirements can be reduced by circulating
portions of x or y through processes in ring fashion, with
each process using each portion as it passes through, so
that no process need store entire vector at once

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Matrix-Vector Product

@ Consider matrix-vector product
y=Ax
where A is n x n matrix and x and y are n-vectors

@ Components of vector y are given by

n
Yi = E Q5 Tj, izl,...,n
j=1

@ Each of n components requires n multiply-add operations,
so model serial time as

Tl = tcn2 ﬂ
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Parallel Algorithm

Partition

@ Fori,j=1,...,n,fine-grain task (i, j) stores a;; and
computes a;; x;, yielding 2-D array of n? fine-grain tasks

@ Assuming no replication of data, at most 2n fine-grain
tasks store components of  and y, say either

o for some j, task (j, ) stores z; and task (¢, j) stores y;, or
o task (i,¢) stores both z; and y;, i =1,...,n
Communicate

@ Forj=1,...,n, task that stores x; broadcasts it to all
other tasks in jth task column

@ Fori=1,...,n, sum reduction over ith task row gives y; T
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Fine-Grain Tasks and Communication
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Fine-Grain Parallel Algorithm

broadcast z; to tasks (k,j), k=1,...,n { vertical broadcast }
Yi = ;T { local scalar product }

reduce y; across tasks (i, k), k =1,...,n { horizontal sum reduction }

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Agglomeration

Agglomerate

With n x n array of fine-grain tasks, natural strategies are

@ 2-D: Combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

2-D Agglomeration

@ Subvector of « broadcast along each task column

@ Each task computes local matrix-vector product of
submatrix of A with subvector of x

@ Sum reduction along each task row produces subvector of
result y

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

2-D Agglomeration
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

1-D Agglomeration

1-D column agglomeration

@ Each task computes product of its component of x times
its column of matrix, with no communication required

@ Sum reduction across tasks then produces y

1-D row agglomeration

@ If x stored in one task, then broadcast required to
communicate needed values to all other tasks

@ If = distributed across tasks, then multinode broadcast
required to communicate needed values to other tasks

@ Each task computes inner product of its row of A with .
entire vector x to produce its component of y 1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

1-D Column Agglomeration
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Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Vector Product

1-D Row Agglomeration
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

@ Column algorithm begins with communication-free local
saxpy computations followed by sum reduction

@ Row algorithm begins with broadcast followed by
communication-free local sdot computations

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Mapping

Map

@ 2-D: Assign (n/k)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

2-D Agglomeration with Block Mapping
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

1-D Column Agglomeration with Block Mapping
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

1-D Row Agglomeration with Block Mapping
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Coarse-Grain Parallel Algorithm

broadcast x| ;) to jth process column  { vertical broadcast }
Yii] = A[)1T5] { local matrix-vector product }

reduce yj;) across ith process row { horizontal sum reduction }

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Scalability

@ Time for computation phase is
Tcomp =t n2/p
regardless of network or agglomeration scheme

@ For 2-D agglomeration on 2-D mesh, each of two
communication phases requires time

(ts +twn/p) (VP —1) mts\/D+tyn
so total time is

Ty = ten?/p+2(ts /P + twn)
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Scalability for 2-D Mesh

@ To determine isoefficiency function, set
ten® =~ E (t.n* + 2(1531)3/2 +twnp))

which holds if n = ©(p), so isoefficiency function is ©(p?),
since 71 = O(n?)
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Scalability for Hypercube

@ Total time for hypercube is

T, = ten®/p+ (ts+twn/\/p) logp

= ten?/p+tslogp+tyn(logp)/y/p
@ To determine isoefficiency function, set
ten® ~ E (t.n® +typ logp + twn /p logp)

which holds for large p if n = ©(,/p log p), so isoefficiency
function is ©(p (log p)?), since T} = O(n?)

1
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Scalability for 1-D Mesh

@ Depending on network, time for communication phase with
1-D agglomeration is at least

e 1-D mesh: Teomm = (ts +twn/p) (p — 1)
o 2-D mesh: Teomm = (ts + twn/p)2(y/p — 1)
e hypercube: Teomm = (ts + twn/p) logp

@ For 1-D agglomeration on 1-D mesh, total time is at least

T, = ten?/p+(ts+twn/p)(p—1)
tcn2/p+t5p+twn

Q
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Scalability

Scalability for 1-D Mesh

@ To determine isoefficiency function, set
ten? ~ E(tcn2 + typ? +twnp)

which holds if n = ©(p), so isoefficiency function is ©(p?),
since 71 = O(n?)
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Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Matrix-Matrix Product

@ Consider matrix-matrix product
C=AB
where A, B, and result C are n x n matrices
@ Entries of matrix C are given by
n
Cijzzaikbkja i,j:1,...,n
k=1

@ Each of n? entries of C requires n multiply-add operations,
so model serial time as

Tl = tcn3 ﬂ
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Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Matrix-Matrix Product

@ Matrix-matrix product can be viewed as
e n? inner products, or
e sum of n outer products, or
e n matrix-vector products

and each viewpoint yields different algorithm
@ One way to derive parallel algorithms for matrix-matrix

product is to apply parallel algorithms already developed
for inner product, outer product, or matrix-vector product

@ We will develop parallel algorithms for this problem directly,
however
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Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Parallel Algorithm

Partition

@ Fori,j,k=1,...,n,fine-grain task k
(4,7, k) computes product a; by, yielding
3-D array of n? fine-grain tasks i

@ Assuming no replication of data, at most
3n? fine-grain tasks store entries of A, B, J
or C, say task (i, j, j) stores a;;, task
(4,7,1) stores b;;, and task (i, j, k) stores
c;ij fori,j=1,...,n and some fixed k&

@ We refer to subsets of tasks along i, j, and k dimensions
as rows, columns, and layers, respectively, so kth column

of A and kth row of B are stored in kth layer of tasks 1
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Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Parallel Algorithm

Communicate

@ Broadcast entries of jth column of A horizontally along
each task row in jth layer

@ Broadcast entries of ith row of B vertically along each task
column in ith layer

@ Fori,j=1,...,n,result ¢; is given by sum reduction over
tasks (i,7,k), k=1,...,n

I
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Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Algorithm

broadcast a; to tasks (i,q,k), ¢ =1,...

broadcast by to tasks (¢,j,k), ¢ =1, ...

Cij = aiby;j

,n  { horizontal broadcast }
,n  {vertical broadcast }

{ local scalar product }

reduce c;; across tasks (i,7,q), ¢ =1,...,n {lateral sum reduction }
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Parallel Algorithm
Agglomeration Schemes
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Agglomeration

Agglomerate
With n x n x n array of fine-grain tasks, natural strategies are

@ 3-D: Combine ¢ x ¢ x ¢ subarray of fine-grain tasks

@ 2-D: Combine ¢ x ¢ x n subarray of fine-grain tasks,
eliminating sum reductions

@ 1-D column: Combine n x 1 x n subarray of fine-grain
tasks, eliminating vertical broadcasts and sum reductions

@ 1-D row: Combine 1 x n x n subarray of fine-grain tasks,
eliminating horizontal broadcasts and sum reductions
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Mapping

Map
Corresponding mapping strategies are

@ 3-D: Assign (n/q)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 3-D mesh

@ 2-D: Assign (n/q)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh T
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Agglomeration with Block Mapping

1-D row 1-D col 2-D 3-D

I
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Coarse-Grain 3-D Parallel Algorithm

broadcast Aj; ) to ith process row { horizontal broadcast }
broadcast By, to jth process column  { vertical broadcast }
Ciitii1 = Ak B { local matrix product }

reduce CJ;)[;] across process layers { lateral sum reduction }

1
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Agglomeration with Block Mapping

I I -
All All Bll BIZ A11811+ AIZBZI A11B12+AIZBIZ
1-D column: =
A21 AZZ BZI BZZ AZI Bll + AZZE\ZI /;421 Bu"’ AZZBZZ
‘All AIZ‘ ‘Bll BIZ‘ | AIIB;11+AIZBiZI A113112+A123122 |
1-D row: = i T + 1;
A21 AZZ ‘ ‘le BZZ ‘ | A21 Bll + AZZBZI All Blz+ AZZBZZ |

I
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Coarse-Grain 2-D Parallel Algorithm

all-to-all bcast A(;j;; in ith process row { horizontal broadcast }
all-to-all bcast By;)[;; in jth process column  { vertical broadcast }
Cliyj) =0
fork=1,...,\/p
Clijig) = Clitlg) + A1 Biuils) { sum local products }
end
I
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Fox Algorithm

@ Algorithm just described requires excessive memory, since
each process accumulates ,/p blocks of both A and B

@ One way to reduce memory requirements is to

e broadcast blocks of A successively across process rows,
and

e circulate blocks of B in ring fashion vertically along process
columns

step by step so that each block of B comes in conjunction
with appropriate block of A broadcast at that same step

@ This algorithm is due to Fox et al.
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Cannon Algorithm

@ Another approach, due to Cannon, is to circulate blocks of
B vertically and blocks of A horizontally in ring fashion

@ Blocks of both matrices must be initially aligned using
circular shifts so that correct blocks meet as needed

@ Requires even less memory than Fox algorithm, but trickier
to program because of shifts required

@ Performance and scalability of Fox and Cannon algorithms
are not significantly different from that of previous 2-D
algorithm, but memory requirements are much less

1
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Scalability for 3-D Agglomeration

@ For 3-D agglomeration, computing each of p blocks Cf;

requires matrix-matrix product of two (n//p) x (n/¥/p)

blocks, so

Tcomp =t (n/\?/};)?) =t n3/p
@ On 3-D mesh, each broadcast or reduction takes time
(ts +tw (n/\g/ﬁ)Q) (Vp—1)~ts p1/3 +tw n2/p1/3
@ Total time is therefore
T, =tc n3/p+ 3t5p1/3 + 3ty 712/;01/3
T
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Scalability for 3-D Agglomeration

@ To determine isoefficiency function, set
ten®~ E (te n® + 3t p4/3 + 3ty n2p2/3)

which holds for large p if n = ©(p*/?), so isoefficiency
function is ©(p?), since Ty = O(n?)

@ For hypercube, total time becomes

T, = ton®/p +ts logp + t, n*(log p) /p*/?

which leads to isoefficiency function of ©(p (logp)?)

1
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Scalability for 2-D Agglomeration

@ For 2-D agglomeration, computation of each block Cf;y(;;

requires /p matrix-matrix products of (n/,/p) x (n/\/p)
blocks, so

Teomp = tey/p (n/\/p)* = ten®/p
@ For 2-D mesh, communication time for broadcasts along
rows and columns is
Teomm = (ts +twn®/p)(yD—1)
R tsy/D+tw n2/\/ﬁ

assuming horizontal and vertical broadcasts can overlap
(multiply by two otherwise) 1
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Scalability for 2-D Agglomeration

@ Total time for 2-D mesh is
Ty = ten®/p+ts/p+ twn®//p
@ To determine isoefficiency function, set
ten® ~ E(tcn?’ —|—2€s]03/2 —|—twn2\/;5)

which holds for large p if n = ©(,/p), so isoefficiency
function is ©(p*/2), since T = ©(n?)

1
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Scalability for 1-D Agglomeration

@ For 1-D agglomeration on 1-D mesh, total time is

T, = ten®/p+ (ts+twn?/p) (p—1)
=~ tcng/p+tsp+twn2

@ To determine isoefficiency function, set
ten® ~ E(tcn3 + typ? +twn2p)

which holds for large p if n = O(p), so isoefficiency function
is ©(p?) since T1 = O(n?)

1
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Communication vs. Memory Tradeoff

@ Communication volume for 2-D algorithms for matrix-matrix
product is optimal, assuming no replication of storage

@ If explicit replication of storage is allowed, then lower
communication volume is possible

@ Block-recursive 3-D algorithm can reduce communication
volume by factor of p~1/6 while increasing memory usage
by factor of p!/3

@ Recently, “2.5-D” algorithms have been developed that
interpolate between 2-D and 3-D algorithms, using partial
storage replication to reduce communication volume to

whatever extent available memory allows
T
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