Parallel Numerical Algorithms Chapter 5 – Vector and Matrix Products

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

э

ヘロト 人間 ト ヘヨト ヘヨト

Outline

ъ

→ Ξ → < Ξ →</p>

< 🗇 🕨

Basic Linear Algebra Subprograms

- Basic Linear Algebra Subprograms (BLAS) are building blocks for many other matrix computations
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for particular computer architecture while high-level routines that call them remain portable
- BLAS offer good opportunities for optimizing utilization of memory hierarchy
- Generic BLAS are available from netlib, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	saxpy	Scalar \times vector + vector
		sdot	Inner product
		snrm2	Euclidean vector norm
2	$\mathcal{O}(n^2)$	sgemv	Matrix-vector product
		strsv	Triangular solution
		sger	Rank-one update
3	$\mathcal{O}(n^3)$	sgemm	Matrix-matrix product
		strsm	Multiple triang. solutions
		ssyrk	Rank- k update

æ

イロン イロン イヨン イヨン

1

Simplifying Assumptions

- For problem of dimension n using p processes, assume p (or in some cases \sqrt{p}) divides n
- For 2-D mesh, assume p is perfect square and mesh is $\sqrt{p}\times\sqrt{p}$
- For hypercube, assume p is power of two
- Assume matrices are square, $n \times n$, not rectangular
- Dealing with general cases where these assumptions do not hold is straightforward but tedious, and complicates notation
- Caveat: your mileage may vary, depending on assumptions about target system, such as level of concurrency in communication

Parallel Algorithm Scalability Optimality

Inner Product

Inner product of two n-vectors x and y given by

$$oldsymbol{x}^Toldsymbol{y} = \sum_{i=1}^n x_i y_i$$

- Computation of inner product requires n multiplications and n - 1 additions
- For simplicity, model serial time as

$$T_1 = t_c \, n$$

where t_c is time for one scalar multiply-add operation

イロト イポト イヨト イヨト

Parallel Algorithm Scalability Optimality

Parallel Algorithm

Partition

• For i = 1, ..., n, fine-grain task i stores x_i and y_i , and computes their product $x_i y_i$

Communicate

• Sum reduction over *n* fine-grain tasks

$$x_1y_1$$
 + x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5 + x_6y_6 + x_7y_7 + x_8y_8 + x_9y_9

Parallel Algorithm Scalability Optimality

Fine-Grain Parallel Algorithm

 $z = x_i y_i$

reduce z across all tasks

{ local scalar product }

ヘロト 人間 ト ヘヨト ヘヨト

{ sum reduction }

ъ

Parallel Algorithm Scalability Optimality

Agglomeration and Mapping

Agglomerate

- Combine *k* components of both *x* and *y* to form each coarse-grain task, which computes inner product of these subvectors
- Communication becomes sum reduction over n/k coarse-grain tasks

Мар

 Assign (n/k)/p coarse-grain tasks to each of p processes, for total of n/p components of x and y per process

$$x_{1}y_{1} + x_{2}y_{2} + x_{3}y_{3} + x_{4}y_{4} + x_{5}y_{5} + x_{6}y_{6} + x_{7}y_{7} + x_{8}y_{8} + x_{9}y_{9}$$

Parallel Algorithm Scalability Optimality

Coarse-Grain Parallel Algorithm

$$z = \boldsymbol{x}_{[i]}^T \boldsymbol{y}_{[i]}$$
 { local inner product

reduce z across all processes { sum reduction }

$[oldsymbol{x}_{[i]}$ means subvector of $oldsymbol{x}$ assigned to process i by mapping]

}

Parallel Algorithm Scalability Optimality

Performance

• Time for computation phase is

$$T_{\rm comp} = t_c \, n/p$$

regardless of network

- Depending on network, time for communication phase is
 - 1-D mesh: $T_{\text{comm}} = (t_s + t_w) (p 1)$
 - 2-D mesh: $T_{\text{comm}} = (t_s + t_w) 2(\sqrt{p} 1)$
 - hypercube: $T_{\text{comm}} = (t_s + t_w) \log p$
- For simplicity, ignore cost of additions in reduction, which is usually negligible

ヘロア 人間 アメヨア 人口 ア

Parallel Algorithm Scalability Optimality

Scalability for 1-D Mesh

• For 1-D mesh, total time is

$$T_p = t_c n/p + (t_s + t_w) (p-1)$$

• To determine isoefficiency function, set

$$\begin{array}{rcl} T_1 &\approx & E\left(p\,T_p\right) \\ t_c\,n &\approx & E\left(t_c\,n+\left(t_s+t_w\right)p\left(p-1\right)\right) \end{array}$$

which holds if $n=\Theta(p^2),$ so isoefficiency function is $\Theta(p^2),$ since $T_1=\Theta(n)$

イロト 不得 とくほ とくほう

Parallel Algorithm Scalability Optimality

Scalability for 2-D Mesh

For 2-D mesh, total time is

$$T_p = t_c n/p + (t_s + t_w) 2(\sqrt{p} - 1)$$

• To determine isoefficiency function, set

$$t_c n \approx E \left(t_c n + (t_s + t_w) p \ 2(\sqrt{p} - 1) \right)$$

which holds if $n = \Theta(p^{3/2})$, so isoefficiency function is $\Theta(p^{3/2})$, since $T_1 = \Theta(n)$

イロト イポト イヨト イヨト

Parallel Algorithm Scalability Optimality

Scalability for Hypercube

For hypercube, total time is

$$T_p = t_c \, n/p + (t_s + t_w) \, \log p$$

• To determine isoefficiency function, set

$$t_c n \approx E (t_c n + (t_s + t_w) p \log p)$$

which holds if $n = \Theta(p \log p)$, so isoefficiency function is $\Theta(p \log p)$, since $T_1 = \Theta(n)$

< 🗇 ▶

★ 문 ► ★ 문 ►

Parallel Algorithm Scalability Optimality

Optimality for 1-D Mesh

- To determine optimal number of processes for given *n*, take *p* to be continuous variable and minimize *T_p* with respect to *p*
- For 1-D mesh

$$T'_{p} = \frac{d}{dp} \Big[t_{c} n/p + (t_{s} + t_{w}) (p-1) \Big]$$

= $-t_{c} n/p^{2} + (t_{s} + t_{w}) = 0$

implies that optimal number of processes is

$$p\approx \sqrt{\frac{t_c\,n}{t_s+t_w}}$$

< 🗇 🕨

Parallel Algorithm Scalability Optimality

Optimality for 1-D Mesh

- If $n < (t_s + t_w)/t_c$, then only one process should be used
- Substituting optimal p into formula for T_p shows that optimal time to compute inner product grows as \sqrt{n} with increasing n on 1-D mesh

イロト イポト イヨト イヨト

Parallel Algorithm Scalability Optimality

Optimality for Hypercube

For hypercube

$$T'_{p} = \frac{d}{dp} \Big[t_{c} n/p + (t_{s} + t_{w}) \log p \Big]$$

= $-t_{c} n/p^{2} + (t_{s} + t_{w})/p = 0$

implies that optimal number of processes is

$$p \approx \frac{t_c \, n}{t_s + t_w}$$

and optimal time grows as $\log n$ with increasing n

ヘロト 人間 ト ヘヨト ヘヨト

Parallel Algorithm Agglomeration Schemes Scalability

Outer Product

- Outer product of two *n*-vectors \boldsymbol{x} and \boldsymbol{y} is $n \times n$ matrix $\boldsymbol{Z} = \boldsymbol{x} \boldsymbol{y}^T$ whose (i, j) entry $z_{ij} = x_i y_j$
- For example,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}^T = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{bmatrix}$$

 Computation of outer product requires n² multiplications, so model serial time as

$$T_1 = t_c \, n^2$$

where t_c is time for one scalar multiplication

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Partition

- For i, j = 1,...,n, fine-grain task (i, j) computes and stores z_{ij} = x_i y_j, yielding 2-D array of n² fine-grain tasks
- Assuming no replication of data, at most 2n fine-grain tasks store components of x and y, say either
 - for some j, task (i, j) stores x_i and task (j, i) stores y_i , or
 - task (i, i) stores both x_i and y_i , $i = 1, \ldots, n$

Communicate

- For *i* = 1, ..., *n*, task that stores *x_i* broadcasts it to all other tasks in *i*th task row
- For j = 1,...,n, task that stores y_j broadcasts it to all other tasks in jth task column

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Tasks and Communication

ъ

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Parallel Algorithm

broadcast x_i to tasks $(i, k), k = 1, \ldots, n$

{ horizontal broadcast }

broadcast y_j to tasks $(k, j), k = 1, \ldots, n$

 $z_{ij} = x_i y_j$

{ vertical broadcast }

イロト 不得 とくほと くほとう

{ local scalar product }

ъ

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine k × k subarray of fine-grain tasks to form each coarse-grain task, yielding (n/k)² coarse-grain tasks
- 1-D column: Combine *n* fine-grain tasks in each column into coarse-grain task, yielding *n* coarse-grain tasks
- 1-D row: Combine *n* fine-grain tasks in each row into coarse-grain task, yielding *n* coarse-grain tasks

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

- Each task that stores portion of x must broadcast its subvector to all other tasks in its task row
- Each task that stores portion of y must broadcast its subvector to all other tasks in its task column

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

ъ

Parallel Algorithm Agglomeration Schemes Scalability

1-D Agglomeration

- If either x or y stored in one task, then broadcast required to communicate needed values to all other tasks
- If either x or y distributed across tasks, then multinode broadcast required to communicate needed values to other tasks

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration

ъ

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration

Michael T. Heath Parallel Numerical Algorithms

ъ

Parallel Algorithm Agglomeration Schemes Scalability

Mapping

Мар

- 2-D: Assign $(n/k)^2/p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n/p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration with Block Mapping

э

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain Parallel Algorithm

broadcast $x_{[i]}$ to *i*th process row { horizontal broadcast } broadcast $y_{[j]}$ to *j*th process column { vertical broadcast } $Z_{[i][j]} = x_{[i]}y_{[j]}^T$ { local outer product }

 $\left[\pmb{Z}_{[i][j]} \text{ means submatrix of } \pmb{Z} \text{ assigned to process } (i,j) \text{ by mapping } \right]$

・ロット (雪) () () () ()

Parallel Algorithm Agglomeration Schemes Scalability

Scalability

• Time for computation phase is

$$T_{\rm comp} = t_c \, n^2 / p$$

regardless of network or agglomeration scheme

 For 2-D agglomeration on 2-D mesh, communication time is at least

$$T_{\rm comm} = \left(t_s + t_w \, n / \sqrt{p}\right) \left(\sqrt{p} - 1\right)$$

assuming broadcasts can be overlapped

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 2-D Mesh

• Total time for 2-D mesh is at least

$$T_p = t_c n^2 / p + (t_s + t_w n / \sqrt{p}) (\sqrt{p} - 1)$$

$$\approx t_c n^2 / p + t_s \sqrt{p} + t_w n$$

• To determine isoefficiency function, set

$$t_c n^2 \approx E (t_c n^2 + t_s p^{3/2} + t_w n p)$$

which holds for large p if $n=\Theta(p),$ so isoefficiency function is $\Theta(p^2),$ since $T_1=\Theta(n^2)$

イロト イポト イヨト イヨト

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for Hypercube

• Total time for hypercube is at least

$$T_p = t_c n^2 / p + (t_s + t_w n / \sqrt{p}) (\log p) / 2$$

= $t_c n^2 / p + t_s (\log p) / 2 + t_w n (\log p) / (2\sqrt{p})$

• To determine isoefficiency function, set

$$t_c n^2 \approx E (t_c n^2 + t_s p (\log p)/2 + t_w n \sqrt{p} (\log p)/2)$$

which holds for large p if $n = \Theta(\sqrt{p} \log p)$, so isoefficiency function is $\Theta(p (\log p)^2)$, since $T_1 = \Theta(n^2)$

< 🗇 >

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 1-D mesh

- Depending on network, time for communication phase with 1-D agglomeration is at least
 - 1-D mesh: $T_{\text{comm}} = (t_s + t_w n/p) (p-1)$
 - 2-D mesh: $T_{\text{comm}} = (t_s + t_w n/p) 2(\sqrt{p} 1)$
 - hypercube: $T_{\text{comm}} = (t_s + t_w n/p) \log p$

assuming broadcasts can be overlapped

・ロット (雪) () () () ()

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 1-D Mesh

• For 1-D mesh, total time is at least

$$T_p = t_c n^2 / p + (t_s + t_w n / p) (p - 1)$$

$$\approx t_c n^2 / p + t_s p + t_w n$$

• To determine isoefficiency function, set

$$t_c n^2 \approx E \left(t_c n^2 + t_s p^2 + t_w n p \right)$$

which holds if $n = \Theta(p)$, so isoefficiency function is $\Theta(p^2)$, since $T_1 = \Theta(n^2)$

イロト イポト イヨト イヨト

Parallel Algorithm Agglomeration Schemes Scalability

Memory Requirements

- With either 1-D or 2-D algorithm, straightforward broadcasting of x or y could require as much total memory as replication of entire vector in all processes
- Memory requirements can be reduced by circulating portions of x or y through processes in ring fashion, with each process using each portion as it passes through, so that no process need store entire vector at once

Parallel Algorithm Agglomeration Schemes Scalability

Matrix-Vector Product

Consider matrix-vector product

$$y = Ax$$

where \boldsymbol{A} is $n \times n$ matrix and \boldsymbol{x} and \boldsymbol{y} are *n*-vectors

• Components of vector y are given by

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, n$$

• Each of *n* components requires *n* multiply-add operations, so model serial time as

$$T_1 = t_c n^2$$

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Partition

- For i, j = 1,...,n, fine-grain task (i, j) stores a_{ij} and computes a_{ij} x_j, yielding 2-D array of n² fine-grain tasks
- Assuming no replication of data, at most 2n fine-grain tasks store components of x and y, say either
 - for some j, task (j,i) stores x_i and task (i,j) stores y_i , or
 - task (i, i) stores both x_i and y_i , i = 1, ..., n

Communicate

- For j = 1, ..., n, task that stores x_j broadcasts it to all other tasks in *j*th task column
- For i = 1, ..., n, sum reduction over *i*th task row gives y_i

イロト 不得 とくほ とくほ とうほ

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Tasks and Communication

ъ

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Parallel Algorithm

broadcast x_j to tasks (k, j), k = 1, ..., n { vertical broadcast }

 $y_i = a_{ij} x_j$

{ local scalar product }

・ロト ・同ト ・ヨト ・ヨト

42/81

reduce y_i across tasks (i, k), k = 1, ..., n { horizontal sum reduction }

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine k × k subarray of fine-grain tasks to form each coarse-grain task, yielding (n/k)² coarse-grain tasks
- 1-D column: Combine *n* fine-grain tasks in each column into coarse-grain task, yielding *n* coarse-grain tasks
- 1-D row: Combine *n* fine-grain tasks in each row into coarse-grain task, yielding *n* coarse-grain tasks

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

- Subvector of x broadcast along each task column
- Each task computes local matrix-vector product of submatrix of A with subvector of x
- Sum reduction along each task row produces subvector of result y

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

Parallel Algorithm Agglomeration Schemes Scalability

1-D Agglomeration

- 1-D column agglomeration
 - Each task computes product of its component of *x* times its column of matrix, with no communication required
 - Sum reduction across tasks then produces y
- 1-D row agglomeration
 - If *x* stored in one task, then broadcast required to communicate needed values to all other tasks
 - If x distributed across tasks, then multinode broadcast required to communicate needed values to other tasks
 - Each task computes inner product of its row of A with entire vector x to produce its component of y

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration

ъ

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration

ъ

Parallel Algorithm Agglomeration Schemes Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

- Column algorithm begins with communication-free local saxpy computations followed by sum reduction
- Row algorithm begins with broadcast followed by communication-free local sdot computations

Parallel Algorithm Agglomeration Schemes Scalability

Mapping

Мар

- 2-D: Assign $(n/k)^2/p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n/p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain Parallel Algorithm

broadcast $x_{[j]}$ to *j*th process column {vertical broadcast }

$$oldsymbol{y}_{[i]} = oldsymbol{A}_{[i][j]}oldsymbol{x}_{[j]}$$

reduce $y_{[i]}$ across *i*th process row

{ local matrix-vector product }

{ horizontal sum reduction }

Parallel Algorithm Agglomeration Schemes Scalability

Scalability

• Time for computation phase is

$$T_{\rm comp} = t_c \, n^2 / p$$

regardless of network or agglomeration scheme

• For 2-D agglomeration on 2-D mesh, each of two communication phases requires time

$$(t_s + t_w n/\sqrt{p})(\sqrt{p} - 1) \approx t_s \sqrt{p} + t_w n$$

so total time is

$$T_p \approx t_c \, n^2/p + 2(t_s \sqrt{p} + t_w \, n)$$

< 🗇 🕨

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 2-D Mesh

• To determine isoefficiency function, set

$$t_c n^2 \approx E \left(t_c n^2 + 2(t_s p^{3/2} + t_w n p) \right)$$

which holds if $n = \Theta(p)$, so isoefficiency function is $\Theta(p^2)$, since $T_1 = \Theta(n^2)$

э

くロト (過) (目) (日)

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for Hypercube

• Total time for hypercube is

$$T_p = t_c n^2 / p + (t_s + t_w n / \sqrt{p}) \log p$$

= $t_c n^2 / p + t_s \log p + t_w n (\log p) / \sqrt{p}$

• To determine isoefficiency function, set

$$t_c n^2 \approx E \left(t_c n^2 + t_s p \log p + t_w n \sqrt{p} \log p \right)$$

which holds for large p if $n = \Theta(\sqrt{p} \log p)$, so isoefficiency function is $\Theta(p (\log p)^2)$, since $T_1 = \Theta(n^2)$

イロト イポト イヨト イヨト

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 1-D Mesh

- Depending on network, time for communication phase with 1-D agglomeration is at least
 - 1-D mesh: $T_{\text{comm}} = (t_s + t_w n/p) (p-1)$
 - 2-D mesh: $T_{\text{comm}} = (t_s + t_w n/p) 2(\sqrt{p} 1)$
 - hypercube: $T_{\text{comm}} = (t_s + t_w n/p) \log p$

For 1-D agglomeration on 1-D mesh, total time is at least

$$T_p = t_c n^2 / p + (t_s + t_w n / p) (p - 1)$$

$$\approx t_c n^2 / p + t_s p + t_w n$$

ヘロア 人間 アメヨア 人口 ア

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 1-D Mesh

• To determine isoefficiency function, set

$$t_c n^2 \approx E (t_c n^2 + t_s p^2 + t_w n p)$$

which holds if $n = \Theta(p)$, so isoefficiency function is $\Theta(p^2)$, since $T_1 = \Theta(n^2)$

э

イロン 不得 とくほ とくほとう

Parallel Algorithm Agglomeration Schemes Scalability

Matrix-Matrix Product

Consider matrix-matrix product

$$C = AB$$

where A, B, and result C are $n \times n$ matrices

• Entries of matrix *C* are given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i, j = 1, \dots, n$$

• Each of n^2 entries of *C* requires *n* multiply-add operations, so model serial time as

$$T_1 = t_c n^3$$

Parallel Algorithm Agglomeration Schemes Scalability

Matrix-Matrix Product

- Matrix-matrix product can be viewed as
 - n² inner products, or
 - sum of n outer products, or
 - *n* matrix-vector products

and each viewpoint yields different algorithm

- One way to derive parallel algorithms for matrix-matrix product is to apply parallel algorithms already developed for inner product, outer product, or matrix-vector product
- We will develop parallel algorithms for this problem directly, however

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Partition

- For i, j, k = 1, ..., n, fine-grain task (i, j, k) computes product $a_{ik} b_{kj}$, yielding 3-D array of n^3 fine-grain tasks
- Assuming no replication of data, at most 3n² fine-grain tasks store entries of A, B, or C, say task (i, j, j) stores a_{ij}, task (i, j, i) stores b_{ij}, and task (i, j, k) stores c_{ij} for i, j = 1,...,n and some fixed k

• We refer to subsets of tasks along *i*, *j*, and *k* dimensions as rows, columns, and layers, respectively, so *k*th column of *A* and *k*th row of *B* are stored in *k*th layer of tasks

< < >> < <</>

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Communicate

- Broadcast entries of *j*th column of *A* horizontally along each task row in *j*th layer
- Broadcast entries of *i*th row of *B* vertically along each task column in *i*th layer
- For i, j = 1, ..., n, result c_{ij} is given by sum reduction over tasks (i, j, k), k = 1, ..., n

イロト イポト イヨト イヨト

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Algorithm

 $c_{ij} = a_{ik}b_{kj}$

broadcast a_{ik} to tasks $(i, q, k), q = 1, \ldots, n$

broadcast
$$b_{kj}$$
 to tasks $(q, j, k), q = 1, \ldots, n$

{ horizontal broadcast }

{ vertical broadcast }

イロト 不得 とくほと くほとう

{ local scalar product }

reduce c_{ij} across tasks (i, j, q), q = 1, ..., n { lateral sum reduction }

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration

Agglomerate

With $n \times n \times n$ array of fine-grain tasks, natural strategies are

- 3-D: Combine $q \times q \times q$ subarray of fine-grain tasks
- 2-D: Combine $q \times q \times n$ subarray of fine-grain tasks, eliminating sum reductions
- 1-D column: Combine n × 1 × n subarray of fine-grain tasks, eliminating vertical broadcasts and sum reductions
- 1-D row: Combine $1 \times n \times n$ subarray of fine-grain tasks, eliminating horizontal broadcasts and sum reductions

(日)

Parallel Algorithm Agglomeration Schemes Scalability

Mapping

Мар

Corresponding mapping strategies are

- 3-D: Assign $(n/q)^3/p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 3-D mesh
- 2-D: Assign $(n/q)^2/p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n/p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

ヘロア ヘビア ヘビア・

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration with Block Mapping

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E → ★ E →

æ

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain 3-D Parallel Algorithm

broadcast $A_{[i][k]}$ to *i*th process row { horizontal broadcast } broadcast $B_{[k][j]}$ to *j*th process column { vertical broadcast } $C_{[i][j]} = A_{[i][k]}B_{[k][j]}$ { local matrix product }

reduce $C_{[i][j]}$ across process layers

{ lateral sum reduction }

ヘロン ヘアン ヘビン ヘビン

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration with Block Mapping

ヘロト 人間 ト ヘヨト ヘヨト

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain 2-D Parallel Algorithm

 $\begin{array}{ll} \mbox{all-to-all bcast } \pmb{A}_{[i][j]} \mbox{ in } i \mbox{th process row} & \{ \mbox{ horizontal broadcast } \} \\ \mbox{all-to-all bcast } \pmb{B}_{[i][j]} \mbox{ in } j \mbox{th process column} & \{ \mbox{ vertical broadcast } \} \\ \mbox{ C}_{[i][j]} = \pmb{O} \\ \mbox{ for } k = 1, \dots, \sqrt{p} \\ \mbox{ } \pmb{C}_{[i][j]} = \pmb{C}_{[i][j]} + \pmb{A}_{[i][k]} \pmb{B}_{[k][j]} & \{ \mbox{ sum local products } \} \\ \mbox{ end} \end{array}$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Parallel Algorithm Agglomeration Schemes Scalability

Fox Algorithm

- Algorithm just described requires excessive memory, since each process accumulates \sqrt{p} blocks of both A and B
- One way to reduce memory requirements is to
 - broadcast blocks of A successively across process rows, and
 - circulate blocks of *B* in ring fashion vertically along process columns

step by step so that each block of B comes in conjunction with appropriate block of A broadcast at that same step

• This algorithm is due to Fox et al.

< 🗇 >

Parallel Algorithm Agglomeration Schemes Scalability

Cannon Algorithm

- Another approach, due to Cannon, is to circulate blocks of *B* vertically and blocks of *A* horizontally in ring fashion
- Blocks of both matrices must be initially aligned using circular shifts so that correct blocks meet as needed
- Requires even less memory than Fox algorithm, but trickier to program because of shifts required
- Performance and scalability of Fox and Cannon algorithms are not significantly different from that of previous 2-D algorithm, but memory requirements are much less

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 3-D Agglomeration

• For 3-D agglomeration, computing each of p blocks $C_{[i][j]}$ requires matrix-matrix product of two $(n/\sqrt[3]{p}) \times (n/\sqrt[3]{p})$ blocks, so

$$T_{\rm comp} = t_c \, (n/\sqrt[3]{p})^3 = t_c \, n^3/p$$

On 3-D mesh, each broadcast or reduction takes time

$$(t_s + t_w (n/\sqrt[3]{p})^2) (\sqrt[3]{p} - 1) \approx t_s p^{1/3} + t_w n^2/p^{1/3}$$

Total time is therefore

$$T_p = t_c n^3 / p + 3t_s p^{1/3} + 3t_w n^2 / p^{1/3}$$

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 3-D Agglomeration

• To determine isoefficiency function, set

$$t_c n^3 \approx E (t_c n^3 + 3t_s p^{4/3} + 3t_w n^2 p^{2/3})$$

which holds for large p if $n = \Theta(p^{2/3})$, so isoefficiency function is $\Theta(p^2)$, since $T_1 = \Theta(n^3)$

• For hypercube, total time becomes

$$T_p = t_c n^3 / p + t_s \log p + t_w n^2 (\log p) / p^{2/3}$$

which leads to isoefficiency function of $\Theta(p (\log p)^3)$

A D N A B N A B N

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 2-D Agglomeration

• For 2-D agglomeration, computation of each block $C_{[i][j]}$ requires \sqrt{p} matrix-matrix products of $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks, so

$$T_{\rm comp} = t_c \sqrt{p} \, (n/\sqrt{p}\,)^3 = t_c \, n^3/p$$

 For 2-D mesh, communication time for broadcasts along rows and columns is

$$T_{\text{comm}} = (t_s + t_w n^2/p)(\sqrt{p} - 1)$$
$$\approx t_s \sqrt{p} + t_w n^2/\sqrt{p}$$

assuming horizontal and vertical broadcasts can overlap (multiply by two otherwise)

イロト イポト イヨト イヨト

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 2-D Agglomeration

Total time for 2-D mesh is

$$T_p \approx t_c \, n^3 / p + t_s \sqrt{p} + t_w \, n^2 / \sqrt{p}$$

• To determine isoefficiency function, set

$$t_c \, n^3 \approx E \, (t_c \, n^3 + t_s \, p^{3/2} + t_w \, n^2 \sqrt{p} \,)$$

which holds for large p if $n=\Theta(\sqrt{p}),$ so isoefficiency function is $\Theta(p^{3/2}),$ since $T_1=\Theta(n^3)$

イロト イポト イヨト イヨト

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 1-D Agglomeration

• For 1-D agglomeration on 1-D mesh, total time is

$$T_p = t_c n^3 / p + (t_s + t_w n^2 / p) (p - 1)$$

$$\approx t_c n^3 / p + t_s p + t_w n^2$$

• To determine isoefficiency function, set

$$t_c n^3 \approx E (t_c n^3 + t_s p^2 + t_w n^2 p)$$

which holds for large p if $n=\Theta(p),$ so isoefficiency function is $\Theta(p^3)$ since $T_1=\Theta(n^3)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Parallel Algorithm Agglomeration Schemes Scalability

Communication vs. Memory Tradeoff

- Communication volume for 2-D algorithms for matrix-matrix product is optimal, assuming no replication of storage
- If explicit replication of storage is allowed, then lower communication volume is possible
- Block-recursive 3-D algorithm can reduce communication volume by factor of $p^{-1/6}$ while increasing memory usage by factor of $p^{1/3}$
- Recently, "2.5-D" algorithms have been developed that interpolate between 2-D and 3-D algorithms, using partial storage replication to reduce communication volume to whatever extent available memory allows

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Parallel Algorithm Agglomeration Schemes Scalability

References

- R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, A three-dimensional approach to parallel matrix multiplication, *IBM J. Res. Dev.*, 39:575-582, 1995
- J. Berntsen, Communication efficient matrix multiplication on hypercubes, *Parallel Comput.* 12:335-342, 1989
- J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger, Communication-optimal parallel recursive rectangular matrix multiplication, IPDPS, 2013
- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, *Acta Numerica* 2:111-197, 1993

Parallel Algorithm Agglomeration Schemes Scalability

References

- R. Dias da Cunha, A benchmark study based on the parallel computation of the vector outer-product A = uv^T operation, *Concurrency: Practice and Experience* 9:803-819, 1997
- G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms on a hypercube I: matrix multiplication, *Parallel Comput.* 4:17-31, 1987
- D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory matrix multiplication, *J. Parallel Distrib. Comput.* 64:1017-1026, 2004.
- S. L. Johnsson, Communication efficient basic linear algebra computations on hypercube architectures, *J. Parallel Distrib. Comput.* 4(2):133-172, 1987

Parallel Algorithm Agglomeration Schemes Scalability

References

- S. L. Johnsson, Minimizing the communication time for matrix multiplication on multiprocessors, *Parallel Comput.* 19:1235-1257, 1993
- B. Lipshitz, Communication-avoiding parallel recursive algorithms for matrix multiplication, Tech. Rept. UCB/EECS-2013-100, University of California at Berkeley, May 2013.
- O. McBryan and E. F. Van de Velde, Matrix and vector operations on hypercube parallel processors, *Parallel Comput.* 5:117-126, 1987
- R. A. Van De Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algorithm, *Concurrency: Practice and Experience* 9(4):255-274, 1997