

Efficiency: effectiveness of parallel algorithm relative to its serial counterpart (more precise definition later)

Factors determining efficiency of parallel algorithm

- Load balance : distribution of work among processors
- Concurrency: processors working simultaneously
- Overhead: additional work not present in corresponding serial computation

Efficiency is maximized when load imbalance is minimized, concurrency is maximized, and overhead is minimized

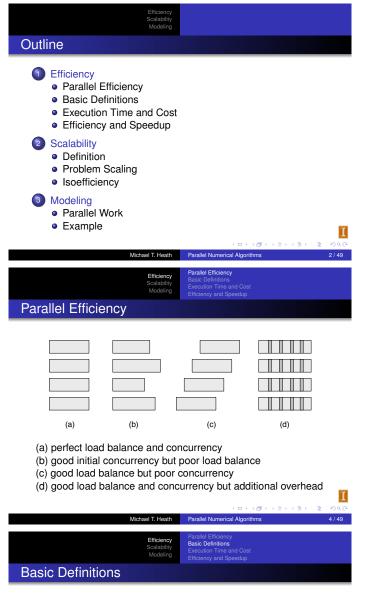
			1
		(日)(四)(四)(四)(五)(五)	୬ବନ
	Michael T. Heath	Parallel Numerical Algorithms	3 / 49
	Efficiency Scalability Modeling	Parallel Efficiency Basic Definitions Execution Time and Cost Efficiency and Speedup	
Basic Definitions			

- Memory (M) amount of storage required (e.g., words) for given problem
- Work (W) number of operations (e.g., flops) required for given problem, including loads and stores
- Velocity (V) number of operations per unit time (e.g., flops/sec) performed by one processor
- Time (T) elapsed wall-clock time (e.g., secs) from beginning to end of computation
- Cost (C) product of number of processors and execution time (e.g., processor-seconds)

1

- Amount of data often determines amount of computation, in which case we may write W(M) to indicate dependence of computational complexity on storage complexity
- For example, when multiplying two full matrices of order n, $M=\Theta(n^2)$ and $W=\Theta(n^3),$ so $W(M)=\Theta(M^{3/2})$
- Since every data item is likely to be used in at least one operation, it is reasonable to assume that work W grows at least linearly with memory M

Michael T. Heath Parallel Numerical Alc



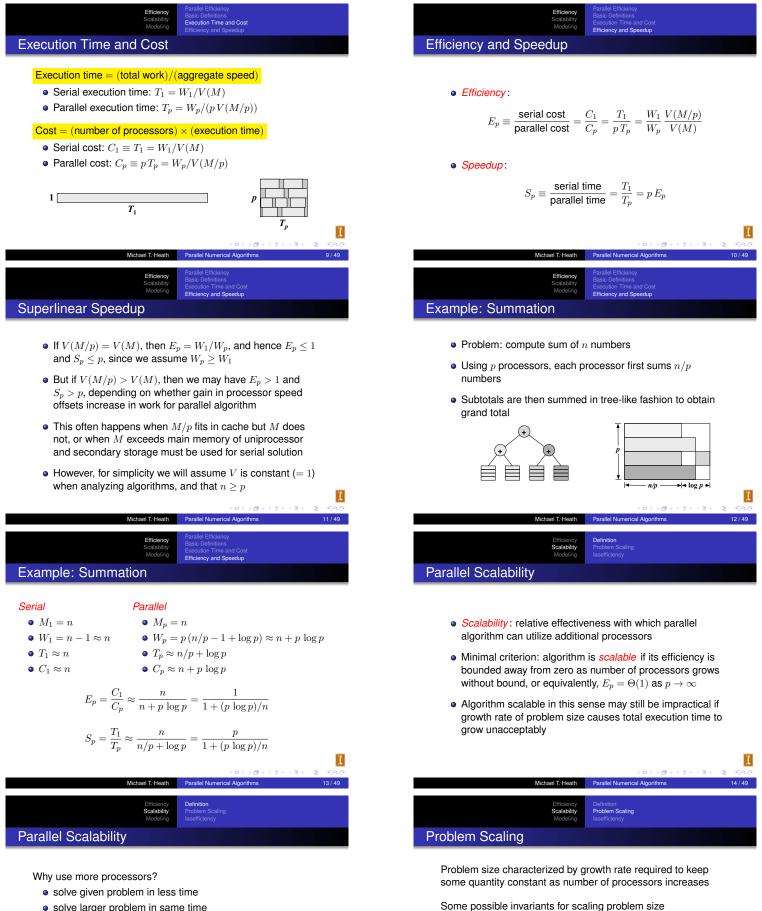
- Subscript indicates number of processors used (e.g., T_1 is serial execution time, W_p is work using p processors, etc.)
- We will assume $M_p \geq M_1$, and with no replication of data it is reasonable to assume $M_p = M_1$ for $p \geq 1$, in which case we drop subscript and write just M
- If serial algorithm is optimal and we disregard chance effects, then $W_p \ge W_1$, and in general $W_p > W_1$ for p > 1
- Parallel overhead: $O_p \equiv W_p W_1$

	 < (2) < (2) < (2) < (2) < (2) 	I voc
Michael T. Heath	Parallel Numerical Algorithms	6 / 49
Efficiency Scalability Modeling	Parallel Efficiency Basic Definitions Execution Time and Cost Efficiency and Speedup	
Processor Speed		

- Due to memory hierarchy, effective processor speed depends on amount of memory used
- Assuming processors are identical, we will have $V_p(M) = V_1(M) = V(M)$ for any given M, but in general we may have $V(M) \neq V(N)$ if $M \neq N$
- In particular, for evenly distributed data across p processors, we may have V(M/p) > V(M), since M/p may fit in faster memory for sufficiently large p

Michael T. Heath Parallel Numerical Aloc

• Aggregate speed of p processors is pV(M/p)



- solve larger problem in same time
- obtain sufficient memory to solve given (or larger) problem
- solve ever larger problems regardless of execution time

Larger problems require more memory M and work W_1 , e.g.,

- finer resolution or larger domain in atmospheric simulation
- more particles in molecular or galactic simulations
- additional physical effects or greater detail in modeling

Michael T. Heath Parallel Numerical Algor

• serial work per processor: $W_1 = \Theta(p)$

Michael T. Heath Parallel Numerical Aloc

- memory per processor: $M = \Theta(p)$
- accuracy
- efficiency: $E_p = \Theta(1)$

• serial work: $W_1 = \Theta(1)$

• execution time: $T_p = \Theta(1)$

Fixed Serial Work

- Sometimes called strong scaling
- Using more processors to solve fixed problem may reduce execution time initially, but gain diminishes as *p* grows
- Execution time may even increase due to increased parallel overhead
- If p > M, then some processors have no data, and if $p > W_1$, then some processors have no work!
- In practice, potential parallelism for fixed problem is exhausted long before these extremes are reached

el T Heath

• In any case, $E_p \to 0$ as $p \to \infty,$ so no algorithm is scalable for fixed problem

Efficiency Definition Scalability Problem Scaling Modeling Isoefficiency

Parallel Numerical Alg

17/49

1

Amdahl's Law

- Assume fraction *s* of work for given problem is serial, with $0 \le s \le 1$, while remaining portion, 1 s, is *p*-fold parallel
- Then

$$\begin{array}{rcl} T_p & = & s \, T_1 + (1-s) \, \frac{T_1}{p} \\ E_p & = & \frac{T_1}{p \, T_p} = \frac{1}{s \, p + (1-s)} \\ S_p & = & \frac{T_1}{T_p} = \frac{p}{s \, p + (1-s)} \end{array}$$

and hence $E_p \to 0$ and $S_p \to 1/s$ as $p \to \infty$

• For example, if serial fraction exceeds 1 percent, then speedup can never exceed 100 for any p

Michael T. Heath	Parallel Numerical Algorithms	19 / 49
Efficiency Scalability Modeling	Definition Problem Scaling Isoefficiency	
Example: Summation		

- For summation example, $T_p \approx n/p + \log p$
- To maintain constant $T_p = T$, must have $n = p (T \log p)$, which is impossible for $p \ge e^T$
- Even for $p < e^T,$ we have $E_p = 1 (\log p)/T,$ which decreases with increasing p
- Algorithm is *not* scalable with fixed execution time

• Summing pn numbers using p processors, we have

$$E_p = \frac{W_1}{W_p} \approx \frac{p\,n}{p\,n+p\,\log p} = \frac{1}{1+(\log p)/n} \to 0$$

so algorithm is *not* scalable with fixed serial work per processor

Michael T. Heath Parallel Numerical Alg

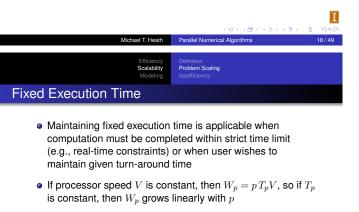
	Efficiency Scalability Modeling	Definition Problem Scali Isoefficiency
Example: Summati	ion	

For summation example

$$E_p = \frac{1}{1 + (p \log p)/n}$$

so efficiency is high when $n \gg p,$ but for fixed $n, \ E_p \to 0$ as $\ p \to \infty$

- Once p > n, additional processors have no data or work
- Algorithm is not scalable for fixed problem



- If W_p grows faster than linearly with memory M, then M must grow sublinearly with p to maintain constant T_p
- Thus, with fixed execution time, algorithm cannot be scalable unless both memory M and work W_p grow at most linearly with p

Michael T. Heath Parallel Numeri

Efficiency Definition Scalability Problem S

- Fixed Serial Work per Processor
 - Sometimes called weak scaling
 - Not particularly natural in applications, but useful as scalability measure
 - If W_p = Θ(p), then T_p = W_p/p would be constant, so any increase in T_p indicates superlinear growth in parallel overhead O_p
 - $E_p = W_1/W_p \to 0$ unless $W_p = \Theta(p)$, so algorithm is not scalable unless parallel overhead grows at most linearly with p

- Applicable for problems that saturate all available memory, which in distributed-memory multicomputer grows linearly with number of processors
- If W_1 grows linearly with M, then this invariant is same as fixed serial work per processor
- But if W_1 grows faster than linearly with M, then execution time T_p grows superlinearly with p, so algorithm may be impractical even if efficiency is reasonable

el T. Heath Parallel Nun

Fixed Accuracy

- For some problems, desired accuracy of solution determines amount of memory and work required
- It is pointless to increase problem size beyond that necessary to achieve desired accuracy
- Choice of resolution can affect serial work W_1 in subtle and complex ways
 - conditioning of problem
 - convergence rate for iterative method
 - length of time step for time-dependent problem

<mark>্য</mark> ৩৭৫ 25/49

1

1

Efficiency Scatability Modeling Isoefficiency Function

- W_1 typically expressed as function $W_1(n)$ of some parameter n characterizing problem (e.g., $W_1 = \Theta(n^3)$ for multiplying two matrices of order n)
- W_p depends on both n and p, so we write $W_p(n, p)$
- Relationship $W_1(n) E W_p(n, p) = 0$ for constant E implicitly defines n as function of p, which we write as n(p)
- Isoefficiency function: $W_1(n(p))$
- Isoefficiency function for given p is minimum problem size required to maintain given constant efficiency E
- Specific value depends on *E*, but in practice only its order of magnitude is of interest

Isoefficiency and Scalability

- $T_p = W_1/(p E)$ is constant if isoefficiency function is $\Theta(p)$, but otherwise T_p grows with p
- Growth rate of T_p may or may not be acceptable
- \bullet Isoefficiency function of $\Theta(p)$ is desirable, but for many problems is not attainable
- More achievable isoefficiency function is $\Theta(p \log p)$ or $\Theta(p\sqrt{p})$, for which T_p grows relatively slowly, like $\log p$ or \sqrt{p} , respectively, which may be acceptable
- Algorithm with isoefficiency function $\Theta(p^2)$ or higher has poor scalability, since T_p grows at least linearly with p

Efficiency Scalability Modeling

Reducing Idle Time

- Idle time due to lack of work can be reduced by improving load balance, if possible
- Idle time due to lack of data can be reduced by overlapping computation and communication
- Assigning more than one process per processor allows possibility of executing another process whenever given process is blocked awaiting data (*multithreading*)

Michael T. Heath Parallel Numerical Alc

Fixed Efficiency

- Previous scaling invariants determined rate of growth in problem size, and then we analyzed resulting efficiency to determine scalability
- More direct approach is to use efficiency itself as scaling invariant, i.e., we determine minimum growth rate in problem size required to maintain *constant* efficiency
- If this is possible, then algorithm is scalable, but it may still be impractical if required growth rate in problem size is excessive, leading to unacceptably large execution time
- Thus, resulting growth rate in problem size determines degree to which algorithm is scalable

Efficiency Definition Scalability Problem Sca Modeling Isoefficiency

Michael T Heath Parallel Numerical Alor

Example: Isoefficiency

In summation example, for

$$W_1 = E W_p$$

$$n \approx E (n + p \log p)$$

to hold for constant E, must have $n=\Theta(p\,\log p),$ so isoefficiency function is

$$W_1(n(p)) = \Theta(p \log p$$

- So if number of numbers to be summed grows like $p \log p$, then efficiency is constant and algorithm is scalable
- Note, however, that execution time T_p grows like $\log p$

Efficiency Scalability

Modeling Parallel Work

In message-passing model of computation, parallel work can be subdivided into computation, communication, and idle:

$$W_p = W_{\rm comp} + W_{\rm comm} + W_{\rm idle}$$

- W_{comp}: serial work W₁ plus any additional computational work due to parallel execution, such as replicated or speculative work
- W_{comm}: time spent sending and receiving messages
- W_{idle}: time spent idling due to lack of computational work or lack of necessary data

Parallel Numerical Algo

30/49

26/49

Efficiency Scalability Modeling

Example: 3-D Grid Computation

Consider 3-D, $n \times n \times z$ finite difference grid, where n is number of grid points in each of two horizontal dimensions, and z is number of grid points in vertical dimension (typically $z \ll n$)

- *Partition*: assign one grid point per fine-grain task
- Communicate: 9-point horizontal stencil
- Agglomerate : First, consider 1-D agglomeration along one horizontal dimension of 3-D grid, with subgrid of size $n \times (n/p) \times z$ assigned to each coarse-grain task

Example: 3-D Grid, 1-D Agglomeration

Work:

With no replicated computation,

 $W_{\rm comp} = t_c n^2 z$

- where t_c is computation time per grid point
- Each task exchanges 2nz grid points with each of its two neighbors, so

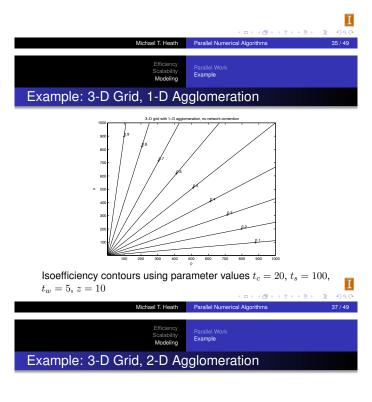
$$W_{\rm comm} = p \left(2t_s + 4t_w nz \right)$$

• Assuming p divides n and no idle time waiting for messages,

 $W_{\rm idle} = 0$ Parallel Nun 3 / 49 Example: 3-D Grid, 1-D Agglomeration

$$E_{p} = \frac{W_{1}}{W_{p}} = \frac{T_{1}}{p T_{p}} = \frac{t_{c} n^{2} z}{t_{c} n^{2} z + 2t_{s} p + 4t_{w} n z p}$$

- E_p decreases with increasing p, t_s , and t_w
- E_p increases with increasing n, z, and t_c



Execution time:

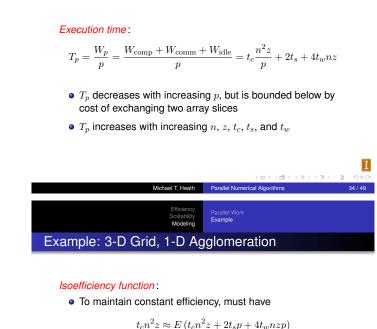
$$T_p = \frac{W_p}{p} = \frac{W_{\text{comp}} + W_{\text{comm}} + W_{\text{idle}}}{p} = t_c \frac{n^2 z}{p} + 4t_s + 8t_w n z / \sqrt{p}$$

Efficiency:

$$E_{p} = \frac{W_{1}}{W_{p}} = \frac{T_{1}}{p T_{p}} = \frac{t_{c} n^{2} z}{t_{c} n^{2} z + 4 t_{s} p + 8 t_{w} n z \sqrt{p}}$$

Parallel Numerical Ale

T



Example: 3-D Grid, 1-D Agglomeration

which holds for sufficiently large p if $n = \Theta(p)$

- Since $W_1 = \Theta(n^2)$, isoefficiency function is $\Theta(p^2)$
- Isoefficiency contours as function of n and p for particular choice of parameters shown next

- Next consider 2-D agglomeration along both horizontal dimensions of 3-D grid, with subgrid of size $(n/\sqrt{p})\times (n/\sqrt{p})\times z$ assigned to each coarse-grain task
- $W_{\rm comp}$ remains same as before, and assuming \sqrt{p} divides n, load balance is uniform and $W_{idle} = 0$
- Each task exchanges $2(n/\sqrt{p})z$ points with each of its four neighbors, so

$$W_{\text{comm}} = p\left(4t_s + 8t_w nz/\sqrt{p}\right) = 4t_s p + 8t_w nz\sqrt{p}$$

1

Parallel Numerical Algorith 38/49

Example: 3-D Grid, 2-D Agglomeration

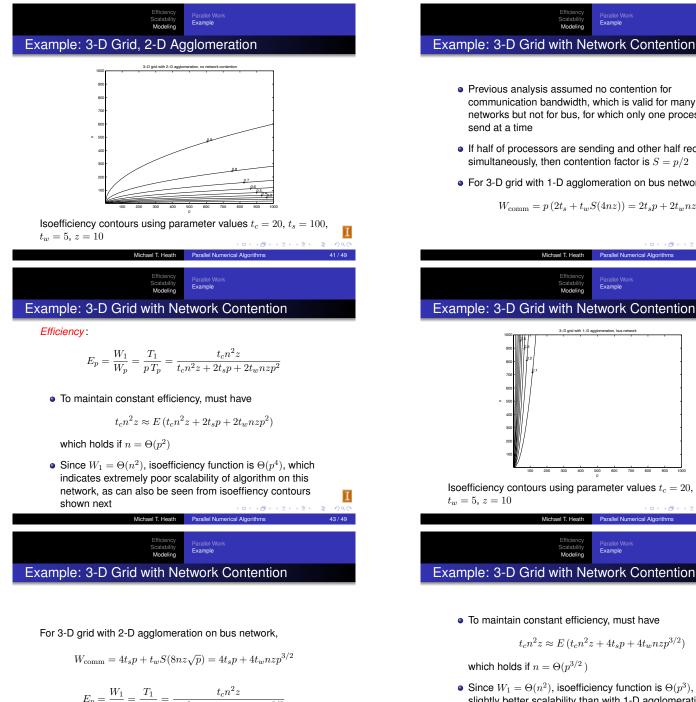
Isoefficiency function :

• To maintain constant efficiency, must have

 $t_c n^2 z \approx E \left(t_c n^2 z + 4 t_s p + 8 t_w n z \sqrt{p} \right)$

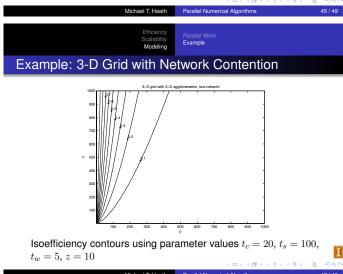
which holds if $n = \Theta(\sqrt{p})$

- Since $W_1 = \Theta(n^2)$, isoefficiency function is $\Theta(p)$, so 2-D agglomeration is much more scalable than 1-D agglomeration
- Isoefficiency contours as function of n and p for particular choice of parameters shown next
- For given p, far smaller problem is required to achieve given efficiency than with 1-D agglomeration Michael T Heath Parallel Num



 $E_p = \frac{W_1}{W_p} = \frac{T_1}{p T_p} = \frac{t_c n^2 z}{t_c n^2 z + 4 t_s p + 4 t_w n z p^{3/2}}$

1



- Previous analysis assumed no contention for communication bandwidth, which is valid for many networks but not for bus, for which only one processor can send at a time • If half of processors are sending and other half receiving simultaneously, then contention factor is S = p/2 For 3-D grid with 1-D agglomeration on bus network, $W_{\text{comm}} = p\left(2t_s + t_w S(4nz)\right) = 2t_s p + 2t_w nz p^2$ Parallel Numerical Alo 42/49 Example: 3-D Grid with Network Contention Isoefficiency contours using parameter values $t_c = 20, t_s = 100$, I $t_w = 5, z = 10$ Parallel W Example
 - Example: 3-D Grid with Network Contention
 - To maintain constant efficiency, must have

$$t_c n^2 z \approx E \left(t_c n^2 z + 4 t_s p + 4 t_w n z p^{3/2} \right)$$

which holds if $n = \Theta(p^{3/2})$

- Since $W_1 = \Theta(n^2)$, isoefficiency function is $\Theta(p^3)$, which is slightly better scalability than with 1-D agglomeration, but still quite poor
- · Corresponding isoefficiency contours shown next

Michael T. Heath	ت ج بری	
Efficiency Scalability Modeling	Parallel Work Example	
References		
 D. L. Eager, J. Zahorjan, and E. D. Lazowska, Speedup versus efficiency in parallel systems, <i>IEEE Trans. Comput.</i> 38:408-423, 1989 		
 A. Grama, A. Gupta, and V. Kumar, Isoefficiency: measuring the scalability of parallel algorithms and architectures, <i>IEEE Parallel Distrib. Tech.</i> 1(3):12-21, August 1993 		
 J. L. Gustafson, Reevaluating Amdahl's law, Comm. ACM 31:532-533, 1988 		
 V. Kumar and A. Gupta, Analyzing scalability of parallel algorithms and architectures, <i>J. Parallel Distrib. Comput.</i> 22:379-391, 1994 		

T Heath Parallel Numerical Al

Scalability Modeling Parallel Work

References

- D. M. Nicol and F. H. Willard, Problem size, parallel architecture, and optimal speedup, *J. Parallel Distrib. Comput.* 5:404-420, 1988
- J. P. Singh, J. L. Hennessy, and A. Gupta, Scaling parallel programs for multiprocessors: methodology and examples, *IEEE Computer*, 26(7):42-50, 1993
- X. H. Sun and L. M. Ni, Scalable problems and memory-bound speedup, *J. Parallel Distrib. Comput.*, 19:27-37, 1993
- P. H. Worley, The effect of time constraints on scaled speedup, *SIAM J. Sci. Stat. Comput.*, 11:838-858, 1990

 ←□ ▷ ← ₫ ▷ ← ≧ ▷ ← ≧ ▷ ◇ Q (~

 Michael T. Heath

 Parallel Numerical Algorithms

 49 / 49

I