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Parallel Efficiency

Efficiency : effectiveness of parallel algorithm relative to its
serial counterpart (more precise definition later)

Factors determining efficiency of parallel algorithm
Load balance : distribution of work among processors
Concurrency : processors working simultaneously
Overhead : additional work not present in corresponding
serial computation

Efficiency is maximized when load imbalance is minimized,
concurrency is maximized, and overhead is minimized
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Parallel Efficiency

(a) (b) (c) (d)

(a) perfect load balance and concurrency
(b) good initial concurrency but poor load balance
(c) good load balance but poor concurrency
(d) good load balance and concurrency but additional overhead
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Basic Definitions

Memory (M ) — amount of storage required (e.g., words)
for given problem
Work (W ) — number of operations (e.g., flops) required for
given problem, including loads and stores
Velocity (V ) — number of operations per unit time (e.g.,
flops/sec) performed by one processor
Time (T ) — elapsed wall-clock time (e.g., secs) from
beginning to end of computation
Cost (C) — product of number of processors and
execution time (e.g., processor-seconds)
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Basic Definitions

Subscript indicates number of processors used (e.g., T1 is
serial execution time, Wp is work using p processors, etc.)

We will assume Mp ≥M1, and with no replication of data it
is reasonable to assume Mp = M1 for p ≥ 1, in which case
we drop subscript and write just M

If serial algorithm is optimal and we disregard chance
effects, then Wp ≥W1, and in general Wp > W1 for p > 1

Parallel overhead : Op ≡Wp −W1

Michael T. Heath Parallel Numerical Algorithms 6 / 49



Efficiency
Scalability
Modeling

Parallel Efficiency
Basic Definitions
Execution Time and Cost
Efficiency and Speedup

Basic Definitions

Amount of data often determines amount of computation,
in which case we may write W (M) to indicate dependence
of computational complexity on storage complexity

For example, when multiplying two full matrices of order n,
M = Θ(n2) and W = Θ(n3), so W (M) = Θ(M3/2)

Since every data item is likely to be used in at least one
operation, it is reasonable to assume that work W grows at
least linearly with memory M
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Processor Speed

Due to memory hierarchy, effective processor speed
depends on amount of memory used

Assuming processors are identical, we will have
Vp(M) = V1(M) = V (M) for any given M , but in general
we may have V (M) 6= V (N) if M 6= N

In particular, for evenly distributed data across p
processors, we may have V (M/p) > V (M), since M/p
may fit in faster memory for sufficiently large p

Aggregate speed of p processors is p V (M/p)
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Execution Time and Cost

Execution time = (total work)/(aggregate speed)

Serial execution time: T1 = W1/V (M)

Parallel execution time: Tp = Wp/(p V (M/p))

Cost = (number of processors)× (execution time)

Serial cost: C1 ≡ T1 = W1/V (M)

Parallel cost: Cp ≡ p Tp = Wp/V (M/p)

T1
Tp

p1
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Efficiency and Speedup

Efficiency :

Ep ≡
serial cost

parallel cost
=

C1

Cp
=

T1

p Tp
=

W1

Wp

V (M/p)

V (M)

Speedup :

Sp ≡
serial time

parallel time
=

T1

Tp
= pEp
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Superlinear Speedup

If V (M/p) = V (M), then Ep = W1/Wp, and hence Ep ≤ 1
and Sp ≤ p, since we assume Wp ≥W1

But if V (M/p) > V (M), then we may have Ep > 1 and
Sp > p, depending on whether gain in processor speed
offsets increase in work for parallel algorithm

This often happens when M/p fits in cache but M does
not, or when M exceeds main memory of uniprocessor
and secondary storage must be used for serial solution

However, for simplicity we will assume V is constant (= 1)
when analyzing algorithms, and that n ≥ p
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Example: Summation

Problem: compute sum of n numbers

Using p processors, each processor first sums n/p
numbers

Subtotals are then summed in tree-like fashion to obtain
grand total

+ +

+

n/p log p

p
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Example: Summation

Serial
M1 = n

W1 = n− 1 ≈ n

T1 ≈ n

C1 ≈ n

Parallel
Mp = n

Wp = p (n/p− 1 + log p) ≈ n + p log p

Tp ≈ n/p + log p

Cp ≈ n + p log p

Ep =
C1

Cp
≈ n

n + p log p
=

1

1 + (p log p)/n

Sp =
T1

Tp
≈ n

n/p + log p
=

p

1 + (p log p)/n
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Parallel Scalability

Scalability : relative effectiveness with which parallel
algorithm can utilize additional processors

Minimal criterion: algorithm is scalable if its efficiency is
bounded away from zero as number of processors grows
without bound, or equivalently, Ep = Θ(1) as p→∞

Algorithm scalable in this sense may still be impractical if
growth rate of problem size causes total execution time to
grow unacceptably
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Parallel Scalability

Why use more processors?
solve given problem in less time
solve larger problem in same time
obtain sufficient memory to solve given (or larger) problem
solve ever larger problems regardless of execution time

Larger problems require more memory M and work W1, e.g.,
finer resolution or larger domain in atmospheric simulation
more particles in molecular or galactic simulations
additional physical effects or greater detail in modeling
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Problem Scaling

Problem size characterized by growth rate required to keep
some quantity constant as number of processors increases

Some possible invariants for scaling problem size
serial work: W1 = Θ(1)

execution time: Tp = Θ(1)

serial work per processor: W1 = Θ(p)

memory per processor: M = Θ(p)

accuracy

efficiency: Ep = Θ(1)
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Fixed Serial Work

Sometimes called strong scaling

Using more processors to solve fixed problem may reduce
execution time initially, but gain diminishes as p grows

Execution time may even increase due to increased
parallel overhead

If p > M , then some processors have no data, and if
p > W1, then some processors have no work!

In practice, potential parallelism for fixed problem is
exhausted long before these extremes are reached

In any case, Ep → 0 as p→∞, so no algorithm is scalable
for fixed problem
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Example: Summation

For summation example

Ep =
1

1 + (p log p)/n

so efficiency is high when n� p, but for fixed n, Ep → 0
as p→∞

Once p > n, additional processors have no data or work

Algorithm is not scalable for fixed problem
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Amdahl’s Law

Assume fraction s of work for given problem is serial, with
0 ≤ s ≤ 1, while remaining portion, 1− s, is p-fold parallel
Then

Tp = s T1 + (1− s)
T1

p

Ep =
T1

p Tp
=

1

s p + (1− s)

Sp =
T1

Tp
=

p

s p + (1− s)

and hence Ep → 0 and Sp → 1/s as p→∞
For example, if serial fraction exceeds 1 percent, then
speedup can never exceed 100 for any p
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Fixed Execution Time

Maintaining fixed execution time is applicable when
computation must be completed within strict time limit
(e.g., real-time constraints) or when user wishes to
maintain given turn-around time

If processor speed V is constant, then Wp = p TpV , so if Tp

is constant, then Wp grows linearly with p

If Wp grows faster than linearly with memory M , then M
must grow sublinearly with p to maintain constant Tp

Thus, with fixed execution time, algorithm cannot be
scalable unless both memory M and work Wp grow at
most linearly with p
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Example: Summation

For summation example, Tp ≈ n/p + log p

To maintain constant Tp = T , must have n = p (T − log p),
which is impossible for p ≥ eT

Even for p < eT , we have Ep = 1− (log p)/T , which
decreases with increasing p

Algorithm is not scalable with fixed execution time
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Fixed Serial Work per Processor

Sometimes called weak scaling

Not particularly natural in applications, but useful as
scalability measure

If Wp = Θ(p), then Tp = Wp/p would be constant, so any
increase in Tp indicates superlinear growth in parallel
overhead Op

Ep = W1/Wp → 0 unless Wp = Θ(p), so algorithm is not
scalable unless parallel overhead grows at most linearly
with p
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Example: Summation

Summing p n numbers using p processors, we have

Ep =
W1

Wp
≈ p n

pn + p log p
=

1

1 + (log p)/n
→ 0

so algorithm is not scalable with fixed serial work per
processor
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Fixed Memory per Processor

Applicable for problems that saturate all available memory,
which in distributed-memory multicomputer grows linearly
with number of processors

If W1 grows linearly with M , then this invariant is same as
fixed serial work per processor

But if W1 grows faster than linearly with M , then execution
time Tp grows superlinearly with p, so algorithm may be
impractical even if efficiency is reasonable
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Fixed Accuracy

For some problems, desired accuracy of solution
determines amount of memory and work required

It is pointless to increase problem size beyond that
necessary to achieve desired accuracy

Choice of resolution can affect serial work W1 in subtle and
complex ways

conditioning of problem
convergence rate for iterative method
length of time step for time-dependent problem
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Fixed Efficiency

Previous scaling invariants determined rate of growth in
problem size, and then we analyzed resulting efficiency to
determine scalability

More direct approach is to use efficiency itself as scaling
invariant, i.e., we determine minimum growth rate in
problem size required to maintain constant efficiency

If this is possible, then algorithm is scalable, but it may still
be impractical if required growth rate in problem size is
excessive, leading to unacceptably large execution time

Thus, resulting growth rate in problem size determines
degree to which algorithm is scalable
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Isoefficiency Function

W1 typically expressed as function W1(n) of some
parameter n characterizing problem (e.g., W1 = Θ(n3) for
multiplying two matrices of order n )

Wp depends on both n and p, so we write Wp(n, p)

Relationship W1(n)− EWp(n, p) = 0 for constant E
implicitly defines n as function of p, which we write as n(p)

Isoefficiency function : W1(n(p))

Isoefficiency function for given p is minimum problem size
required to maintain given constant efficiency E

Specific value depends on E, but in practice only its order
of magnitude is of interest
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Example: Isoefficiency

In summation example, for

W1 = EWp

n ≈ E (n + p log p)

to hold for constant E, must have n = Θ(p log p), so
isoefficiency function is

W1(n(p)) = Θ(p log p)

So if number of numbers to be summed grows like p log p,
then efficiency is constant and algorithm is scalable

Note, however, that execution time Tp grows like log p
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Isoefficiency and Scalability

Tp = W1/(pE) is constant if isoefficiency function is Θ(p),
but otherwise Tp grows with p

Growth rate of Tp may or may not be acceptable

Isoefficiency function of Θ(p) is desirable, but for many
problems is not attainable

More achievable isoefficiency function is Θ(p log p) or
Θ(p
√
p), for which Tp grows relatively slowly, like log p or√

p, respectively, which may be acceptable

Algorithm with isoefficiency function Θ(p2) or higher has
poor scalability, since Tp grows at least linearly with p
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Modeling Parallel Work

In message-passing model of computation, parallel work can
be subdivided into computation, communication, and idle:

Wp = Wcomp + Wcomm + Widle

Wcomp: serial work W1 plus any additional computational
work due to parallel execution, such as replicated or
speculative work

Wcomm: time spent sending and receiving messages

Widle: time spent idling due to lack of computational work
or lack of necessary data
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Reducing Idle Time

Idle time due to lack of work can be reduced by improving
load balance, if possible

Idle time due to lack of data can be reduced by overlapping
computation and communication

Assigning more than one process per processor allows
possibility of executing another process whenever given
process is blocked awaiting data (multithreading )
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Example: 3-D Grid Computation

Consider 3-D, n× n× z finite difference grid, where n is number
of grid points in each of two horizontal dimensions, and z is
number of grid points in vertical dimension (typically z � n)

Partition : assign one grid point per fine-grain task

Communicate : 9-point horizontal stencil

Agglomerate : First, consider 1-D agglomeration along one
horizontal dimension of 3-D grid, with subgrid of size
n× (n/p)× z assigned to each coarse-grain task
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Example: 3-D Grid, 1-D Agglomeration

Work :
With no replicated computation,

Wcomp = tcn
2z

where tc is computation time per grid point

Each task exchanges 2nz grid points with each of its two
neighbors, so

Wcomm = p (2ts + 4twnz)

Assuming p divides n and no idle time waiting for
messages,

Widle = 0
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Example: 3-D Grid, 1-D Agglomeration

Execution time :

Tp =
Wp

p
=

Wcomp + Wcomm + Widle

p
= tc

n2z

p
+ 2ts + 4twnz

Tp decreases with increasing p, but is bounded below by
cost of exchanging two array slices

Tp increases with increasing n, z, tc, ts, and tw
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Example: 3-D Grid, 1-D Agglomeration

Efficiency :

Ep =
W1

Wp
=

T1

p Tp
=

tcn
2z

tcn2z + 2tsp + 4twnzp

Ep decreases with increasing p, ts, and tw

Ep increases with increasing n, z, and tc
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Example: 3-D Grid, 1-D Agglomeration

Isoefficiency function :
To maintain constant efficiency, must have

tcn
2z ≈ E (tcn

2z + 2tsp + 4twnzp)

which holds for sufficiently large p if n = Θ(p)

Since W1 = Θ(n2), isoefficiency function is Θ(p2)

Isoefficiency contours as function of n and p for particular
choice of parameters shown next
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Example: 3-D Grid, 1-D Agglomeration
3!D grid with 1!D agglomeration, no network contention
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Isoefficiency contours using parameter values tc = 20, ts = 100,
tw = 5, z = 10
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Example: 3-D Grid, 2-D Agglomeration

Next consider 2-D agglomeration along both horizontal
dimensions of 3-D grid, with subgrid of size
(n/
√
p)× (n/

√
p)× z assigned to each coarse-grain task

Wcomp remains same as before, and assuming
√
p divides

n, load balance is uniform and Widle = 0

Each task exchanges 2(n/
√
p )z points with each of its four

neighbors, so

Wcomm = p (4ts + 8twnz/
√
p ) = 4tsp + 8twnz

√
p
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Example: 3-D Grid, 2-D Agglomeration

Execution time :

Tp =
Wp

p
=

Wcomp + Wcomm + Widle

p
= tc

n2z

p
+ 4ts + 8twnz/

√
p

Efficiency :

Ep =
W1

Wp
=

T1

p Tp
=

tcn
2z

tcn2z + 4tsp + 8twnz
√
p
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Example: 3-D Grid, 2-D Agglomeration

Isoefficiency function :
To maintain constant efficiency, must have

tcn
2z ≈ E (tcn

2z + 4tsp + 8twnz
√
p )

which holds if n = Θ(
√
p )

Since W1 = Θ(n2), isoefficiency function is Θ(p), so 2-D
agglomeration is much more scalable than 1-D
agglomeration

Isoefficiency contours as function of n and p for particular
choice of parameters shown next

For given p, far smaller problem is required to achieve
given efficiency than with 1-D agglomeration
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Example: 3-D Grid, 2-D Agglomeration
3!D grid with 2!D agglomeration, no network contention
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Isoefficiency contours using parameter values tc = 20, ts = 100,
tw = 5, z = 10
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Example: 3-D Grid with Network Contention

Previous analysis assumed no contention for
communication bandwidth, which is valid for many
networks but not for bus, for which only one processor can
send at a time

If half of processors are sending and other half receiving
simultaneously, then contention factor is S = p/2

For 3-D grid with 1-D agglomeration on bus network,

Wcomm = p (2ts + twS(4nz)) = 2tsp + 2twnzp
2
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Example: 3-D Grid with Network Contention

Efficiency :

Ep =
W1

Wp
=

T1

p Tp
=

tcn
2z

tcn2z + 2tsp + 2twnzp2

To maintain constant efficiency, must have

tcn
2z ≈ E (tcn

2z + 2tsp + 2twnzp
2)

which holds if n = Θ(p2)

Since W1 = Θ(n2), isoefficiency function is Θ(p4), which
indicates extremely poor scalability of algorithm on this
network, as can also be seen from isoeffiency contours
shown next
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Example: 3-D Grid with Network Contention
3!D grid with 1!D agglomeration, bus network
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Isoefficiency contours using parameter values tc = 20, ts = 100,
tw = 5, z = 10
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Example: 3-D Grid with Network Contention

For 3-D grid with 2-D agglomeration on bus network,

Wcomm = 4tsp + twS(8nz
√
p) = 4tsp + 4twnzp

3/2

Ep =
W1

Wp
=

T1

p Tp
=

tcn
2z

tcn2z + 4tsp + 4twnzp3/2

Michael T. Heath Parallel Numerical Algorithms 45 / 49



Efficiency
Scalability
Modeling

Parallel Work
Example

Example: 3-D Grid with Network Contention

To maintain constant efficiency, must have

tcn
2z ≈ E (tcn

2z + 4tsp + 4twnzp
3/2)

which holds if n = Θ(p3/2 )

Since W1 = Θ(n2), isoefficiency function is Θ(p3), which is
slightly better scalability than with 1-D agglomeration, but
still quite poor

Corresponding isoefficiency contours shown next
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Example: 3-D Grid with Network Contention
3!D grid with 2!D agglomeration, bus network
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Isoefficiency contours using parameter values tc = 20, ts = 100,
tw = 5, z = 10
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