
Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallel Numerical Algorithms
Chapter 3 – Parallel Programming

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath Parallel Numerical Algorithms 1 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Outline

1 Parallel Programming Paradigms

2 MPI — Message-Passing Interface
MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

3 OpenMP — Portable Shared Memory Programming

Michael T. Heath Parallel Numerical Algorithms 2 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallel Programming Paradigms

Functional languages

Parallelizing compilers

Object parallel

Data parallel

Shared memory

Partitioned global address space

Remote memory access

Message passing

Michael T. Heath Parallel Numerical Algorithms 3 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Functional Languages

Express what to compute (i.e., mathematical relationships
to be satisfied), but not how to compute it or order in which
computations are to be performed

Avoid artificial serialization imposed by imperative
programming languages

Avoid storage references, side effects, and aliasing that
make parallelization difficult

Permit full exploitation of any parallelism inherent in
computation

Michael T. Heath Parallel Numerical Algorithms 4 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Functional Languages

Often implemented using dataflow, in which operations fire
whenever their inputs are available, and results then
become available as inputs for other operations

Tend to require substantial extra overhead in work and
storage, so have proven difficult to implement efficiently

Have not been used widely in practice, though numerous
experimental functional languages and dataflow systems
have been developed

Michael T. Heath Parallel Numerical Algorithms 5 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallelizing Compilers

Automatically parallelize programs written in conventional
sequential programming languages

Difficult to do for arbitrary serial code

Compiler can analyze serial loops for potential parallel
execution, based on careful dependence analysis of
variables occurring in loop

User may provide hints (directives) to help compiler
determine when loops can be parallelized and how

OpenMP is standard for compiler directives

Michael T. Heath Parallel Numerical Algorithms 6 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallelizing Compilers

Automatic or semi-automatic, loop-based approach has
been most successful in exploiting modest levels of
concurrency on shared-memory systems

Many challenges remain before effective automatic
parallelization of arbitrary serial code can be routinely
realized in practice, especially for massively parallel,
distributed-memory systems

Parallelizing compilers can produce efficient “node code”
for hybrid architectures with SMP nodes, thereby freeing
programmer to focus on exploiting parallelism across
nodes

Michael T. Heath Parallel Numerical Algorithms 7 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Object Parallel

Parallelism encapsulated within distributed objects that
bind together data and functions operating on data

Parallel programs built by composing component objects
that communicate via well-defined interfaces and protocols

Implemented using object-oriented programming
languages such as C++ or Java

Often based on standards and supporting environments
such as CORBA, DCE, CCA

Examples include Charm++ and Legion

Michael T. Heath Parallel Numerical Algorithms 8 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Data Parallel

Simultaneous operations on elements of data arrays,
typified by vector addition

Low-level programming languages, such as Fortran 77 and
C, express array operations element by element in some
specified serial order

Array-based languages, such as APL, Fortran 90, and
MATLAB, treat arrays as higher-level objects and thus
facilitate full exploitation of array parallelism

Michael T. Heath Parallel Numerical Algorithms 9 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Data Parallel

Data parallel languages provide facilities for expressing
array operations for parallel execution, and some allow
user to specify data decomposition and mapping to
processors

High Performance Fortran (HPF) is most visible attempt to
standardize data parallel approach to programming

Though naturally associated with SIMD architectures, data
parallel languages have also been implemented
successfully on general MIMD architectures

Data parallel approach can be effective for highly regular
problems, but tends to be too inflexible to be effective for
irregular or dynamically changing problems

Michael T. Heath Parallel Numerical Algorithms 10 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Shared Memory

Classic shared-memory paradigm, originally developed for
multitasking operating systems, focuses on control
parallelism rather than data parallelism

Multiple processes share common address space
accessible to all, though not necessarily with uniform
access time

Because shared data can be changed by more than one
process, access must be protected from corruption,
typically by some mechanism to enforce mutual exclusion

Shared memory supports common pool of tasks from
which processes obtain new work as they complete
previous tasks

Michael T. Heath Parallel Numerical Algorithms 11 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Lightweight Threads

Most popular modern implementation of explicit
shared-memory programming, typified by pthreads
(POSIX threads)

Reduce overhead for context-switching by providing
multiple program counters and execution stacks so that
extensive program state information need not be saved and
restored when switching control quickly among threads

Provide detailed, low-level control of shared-memory
systems, but tend to be tedious and error prone

More suitable for implementing underlying systems
software (such as OpenMP and run-time support for
parallelizing compilers) than for user-level applications

Michael T. Heath Parallel Numerical Algorithms 12 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Shared Memory

Most naturally and efficiently implemented on true
shared-memory architectures, such as SMPs

Can also be implemented with reasonable efficiency on
NUMA (nonuniform memory access) shared-memory or
even distributed-memory architectures, given sufficient
hardware or software support

With nonuniform access or distributed shared memory,
efficiency usually depends critically on maintaining locality
in referencing data, so design methodology and
programming style often closely resemble techniques for
exploiting locality in distributed-memory systems

Michael T. Heath Parallel Numerical Algorithms 13 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Partitioned Global Address Space

Partitioned global address space (PGAS) model provides
global memory address space that is partitioned across
processes, with a portion local to each process

Enables programming semantics of shared memory while
also enabling locality of memory reference that maps well
to distributed memory hardware

Example PGAS programming languages include Chapel,
Co-Array Fortran, Titanium, UPC, X-10

Michael T. Heath Parallel Numerical Algorithms 14 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Remote Memory Access

One-sided, put and get communication to store data in or
fetch data from memory of another process

Does not require explicit cooperation between processes

Must be used carefully to avoid corruption of shared data

Included in MPI-2, to be discussed later

Michael T. Heath Parallel Numerical Algorithms 15 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Message Passing

Two-sided, send and receive communication between
processes

Most natural and efficient paradigm for distributed-memory
systems

Can also be implemented efficiently in shared-memory or
almost any other parallel architecture, so it is most portable
paradigm for parallel programming

“Assembly language of parallel computing” because of its
universality and detailed, low-level control of parallelism

Fits well with our design philosophy and offers great
flexibility in exploiting data locality, tolerating latency, and
other performance enhancement techniques

Michael T. Heath Parallel Numerical Algorithms 16 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Message Passing

Provides natural synchronization among processes
(through blocking receives, for example), so explicit
synchronization of memory access is unnecessary

Facilitates debugging because accidental overwriting of
memory is less likely and much easier to detect than with
shared-memory

Sometimes deemed tedious and low-level, but thinking
about locality tends to result in programs with good
performance, scalability, and portability

Dominant paradigm for developing portable and scalable
applications for massively parallel systems

Michael T. Heath Parallel Numerical Algorithms 17 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI — Message-Passing Interface

Provides communication among multiple concurrent
processes

Includes several varieties of point-to-point communication,
as well as collective communication among groups of
processes

Implemented as library of routines callable from
conventional programming languages such as Fortran, C,
and C++

Has been universally adopted by developers and users of
parallel systems that rely on message passing

Michael T. Heath Parallel Numerical Algorithms 18 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI — Message-Passing Interface

Closely matches computational model underlying our
design methodology for developing parallel algorithms and
provides natural framework for implementing them

Although motivated by distributed-memory systems, works
effectively on almost any type of parallel system

Often outperforms other paradigms because it enables and
encourages attention to data locality

Michael T. Heath Parallel Numerical Algorithms 19 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI — Message-Passing Interface

Includes more than 125 functions, with many different
options and protocols

Small subset suffices for most practical purposes

We will cover just enough to implement algorithms we will
consider

In some cases, performance can be enhanced by using
features that we will not cover in detail

Michael T. Heath Parallel Numerical Algorithms 20 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI-1

MPI was developed in three major stages, MPI-1 (1994), MPI-2
(1997) and MPI-3 (2012)

Features of MPI-1 include
point-to-point communication
collective communication
process groups and communication domains
virtual process topologies
environmental management and inquiry
profiling interface
bindings for Fortran and C

Michael T. Heath Parallel Numerical Algorithms 21 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI-2

Additional features of MPI-2 include:
dynamic process management
input/output
one-sided operations for remote memory access
bindings for C++

Additional features of MPI-3 include:
nonblocking collectives
new one-sided communication operations
Fortran 2008 bindings

We will cover very little of MPI-2 or MPI-3, which are not
essential for algorithms we will consider

Michael T. Heath Parallel Numerical Algorithms 22 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Language Bindings

MPI includes bindings for Fortran, C, and C++

We will emphasize C bindings; Fortran usage is similar

C versions of most MPI routines return error code as
function value, whereas Fortran versions have additional
integer argument, IERROR, for this purpose

Michael T. Heath Parallel Numerical Algorithms 23 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Building and Running MPI Programs

Executable module must first be built by compiling user
program and linking with MPI library

One or more header files, such as mpi.h, may be required
to provide necessary definitions and declarations

MPI is generally used in SPMD mode, so only one
executable must be built, multiple instances of which are
executed concurrently

Most implementations provide command, typically named
mpirun, for spawning MPI processes

MPI-2 specifies mpiexec for portability

User selects number of processes and on which
processors they will run

Michael T. Heath Parallel Numerical Algorithms 24 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Availability of MPI

Custom versions of MPI supplied by vendors of almost all
current parallel computers systems

Freeware versions available for clusters and similar
environments include

MPICH: http://www.mpich.org/
OpenMPI: http://www.open-mpi.org

Both websites also provide tutorials on learning and using
MPI

MPI standard (MPI-1, -2, -3) available from MPI Forum
http://www.mpi-forum.org

Michael T. Heath Parallel Numerical Algorithms 25 / 64

http://www.mpich.org/
http://www.open-mpi.org
http://www.mpi-forum.org

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Groups and Communicators

Every MPI process belongs to one or more groups

Each process is identified by its rank within given group

Rank is integer from zero to one less than size of group
(MPI_PROC_NULL is rank of no process)

Initially, all processes belong to MPI_COMM_WORLD

Additional groups can be created by user

Same process can belong to more than one group

Viewed as communication domain or context, group of
processes is called communicator

Michael T. Heath Parallel Numerical Algorithms 26 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Specifying Messages

Information necessary to specify message and identify its
source or destination in MPI include

msg: location in memory where message data begins
count: number of data items contained in message
datatype: type of data in message
source or dest: rank of sending or receiving process in
communicator
tag: identifier for specific message or kind of message
comm: communicator

Michael T. Heath Parallel Numerical Algorithms 27 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI Data Types

Available MPI data types include
C: char, int, float, double
Fortran: integer, real, double precision, complex

Use of MPI data types facilitates heterogeneous
environments in which native data types may vary from
machine to machine

Also supports user-defined data types for contiguous or
noncontiguous data

Michael T. Heath Parallel Numerical Algorithms 28 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Minimal MPI

Minimal set of six MPI functions we will need

int MPI_Init(int *argc, char ***argv);
Initiates use of MPI

int MPI_Finalize(void);
Concludes use of MPI

int MPI_Comm_size(MPI_Comm comm,
int *size);
On return, size contains number of processes in
communicator comm

A few special MPI routines may be called before
MPI_Init or after MPI_Finalize

Michael T. Heath Parallel Numerical Algorithms 29 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Minimal MPI

int MPI_Comm_rank(MPI_Comm comm,
int *rank);
On return, rank contains rank of calling process in
communicator comm, with 0 ≤ rank ≤ size-1

int MPI_Send(void *msg, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm);
On return, msg can be reused immediately

int MPI_Recv(void *msg, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status);
On return, msg contains requested message

Michael T. Heath Parallel Numerical Algorithms 30 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Example: MPI Program for 1-D Laplace Example

#include <mpi.h>
int main(int argc, char **argv) {
int k, p, me, left, right, count = 1, tag = 1, nit = 10;
float ul, ur, u = 1.0, alpha = 1.0, beta = 2.0;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
left = me-1; right = me+1;
if (me == 0) ul = alpha; if (me == p-1) ur = beta;
for (k = 1; k <= nit; k++) {

if (me % 2 == 0) {
if (me > 0) MPI_Send(&u, count, MPI_FLOAT,

left, tag, MPI_COMM_WORLD);
if (me < p-1) MPI_Send(&u, count, MPI_FLOAT,

right, tag, MPI_COMM_WORLD);
if (me < p-1) MPI_Recv(&ur, count, MPI_FLOAT,

right, tag, MPI_COMM_WORLD, &status);
if (me > 0) MPI_Recv(&ul, count, MPI_FLOAT,

left, tag, MPI_COMM_WORLD, &status);
}

Michael T. Heath Parallel Numerical Algorithms 31 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Example: MPI Program for 1-D Laplace Example

else {
if (me < p-1) MPI_Recv(&ur, count, MPI_FLOAT,

right, tag, MPI_COMM_WORLD, &status);
MPI_Recv(&ul, count, MPI_FLOAT,

left, tag, MPI_COMM_WORLD, &status);
MPI_Send(&u, count, MPI_FLOAT,

left, tag, MPI_COMM_WORLD);
if (me < p-1) MPI_Send(&u, count, MPI_FLOAT,

right, tag, MPI_COMM_WORLD);
}
u = (ul+ur)/2.0;

}
MPI_Finalize();
}

Michael T. Heath Parallel Numerical Algorithms 32 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Standard Send and Receive Functions

Standard send and receive functions are blocking,
meaning they do not return until resources specified in
argument list can safely be reused

In particular, MPI_Recv returns only after receive buffer
contains requested message

MPI_Send may be initiated before or after matching
MPI_Recv initiated

Depending on specific implementation of MPI, MPI_Send
may return before or after matching MPI_Recv initiated

Michael T. Heath Parallel Numerical Algorithms 33 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Standard Send and Receive Functions

For same source, tag, and comm, messages are
received in order in which they were sent

Wild card values MPI_ANY_SOURCE and MPI_ANY_TAG
can be used for source and tag, respectively, in receiving
message

Actual source and tag can be determined from
MPI_SOURCE and MPI_TAG fields of status structure
(entries of status array in Fortran, indexed by parameters
of same names) returned by MPI_Recv

Michael T. Heath Parallel Numerical Algorithms 34 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Other MPI Functions

MPI functions covered thus far suffice to implement almost
any parallel algorithm with reasonable efficiency

Dozens of other MPI functions provide additional
convenience, flexibility, robustness, modularity, and
potentially improved performance

But they also introduce substantial complexity that may be
difficult to manage

For example, some facilitate overlapping of communication
and computation, but place burden of synchronization on
user

Michael T. Heath Parallel Numerical Algorithms 35 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Communication Modes

Communication modes for sending messages
buffered mode : send can be initiated whether or not
matching receive has been initiated, and send may
complete before matching receive is initiated
synchronous mode : send can be initiated whether or not
matching receive has been initiated, but send will complete
only after matching receive has been initiated
ready mode : send can be initiated only if matching receive
has already been initiated
standard mode : may behave like either buffered mode or
synchronous mode, depending on specific implementation
of MPI and availability of memory for buffer space

Michael T. Heath Parallel Numerical Algorithms 36 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Communication Functions for Various Modes

Mode Blocking Nonblocking
standard MPI_Send MPI_Isend
buffered MPI_Bsend MPI_Ibsend
synchronous MPI_Ssend MPI_Issend
ready MPI_Rsend MPI_Irsend

MPI_Recv and MPI_Irecv are blocking and nonblocking
functions for receiving messages, regardless of mode

MPI_Buffer_attach used to provide buffer space for
buffered mode

Michael T. Heath Parallel Numerical Algorithms 37 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Communication Modes

Nonblocking functions include request argument used
subsequently to determine whether requested operation
has completed
Nonblocking is different from asynchronous
MPI_Wait and MPI_Test wait or test for completion of
nonblocking communication
MPI_Probe and MPI_Iprobe probe for incoming
message without actually receiving it
Information about message determined by probing can be
used to decide how to receive it
MPI_Cancel cancels outstanding message request,
useful for cleanup at end of program or after major phase
of computation

Michael T. Heath Parallel Numerical Algorithms 38 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Standard Mode

Standard mode does not specify whether messages are
buffered
Buffering allows more flexible programming, but requires
additional time and memory for copying messages to and
from buffers
Given implementation of MPI may or may not use buffering
for standard mode, or may use buffering only for messages
within certain range of sizes
To avoid potential deadlock when using standard mode,
portability demands conservative assumptions concerning
order in which sends and receives are initiated
User can exert explicit control by using buffered or
synchronous mode

Michael T. Heath Parallel Numerical Algorithms 39 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Persistent Communication

Communication operations that are executed repeatedly
with same argument list can be streamlined

Persistent communication binds argument list to request,
and then request can be used repeatedly to initiate and
complete message transmissions without repeating
argument list each time

Once argument list has been bound using
MPI_Send_init or MPI_Recv_init (or similarly for
other modes), then request can subsequently be initiated
repeatedly using MPI_Start

Michael T. Heath Parallel Numerical Algorithms 40 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Collective Communication

MPI_Bcast

MPI_Reduce

MPI_Allreduce

MPI_Alltoall

MPI_Allgather

MPI_Scatter

MPI_Gather

MPI_Scan

MPI_Barrier

Michael T. Heath Parallel Numerical Algorithms 41 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Manipulating Communicators

MPI_Comm_create

MPI_Comm_dup

MPI_Comm_split

MPI_Comm_compare

MPI_Comm_free

Michael T. Heath Parallel Numerical Algorithms 42 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Virtual Process Topologies

MPI provides virtual process topologies corresponding to
regular Cartesian grids or more general graphs

Topology is optional additional attribute that can be given
to communicator

Virtual process topology can facilitate some applications,
such as 2-D grid topology for matrices or 2-D or 3-D grid
topology for discretized PDEs

Virtual process topology may also help MPI achieve more
efficient mapping of processes to given physical network

Michael T. Heath Parallel Numerical Algorithms 43 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Virtual Process Topologies

MPI_Dist_graph_create creates general graph
topology, based on number of nodes, node degrees, and
graph edges specified by user

MPI_Cart_create creates Cartesian topology based on
number of dimensions, number of processes in each
dimension, and whether each dimension is periodic (i.e.,
wraps around), as specified by user

Hypercubes are included, since k-dimensional hypercube
is simply k-dimensional torus with two processes per
dimension

MPI_Cart_shift provides shift of given displacement
along any given dimension of Cartesian topology

Michael T. Heath Parallel Numerical Algorithms 44 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Virtual Process Topologies

MPI_Topo_test determines what type of topology, if any,
has been defined for given communicator

Inquiry functions provide information about existing graph
topology, such as number of nodes and edges, lists of
degrees and edges, number of neighbors of given node, or
list of neighbors of given node

Inquiry functions obtain information about existing
Cartesian topology, such as number of dimensions,
number of processes for each dimension, and whether
each dimension is periodic

Functions also available to obtain coordinates of given
process, or rank of process with given coordinates

Michael T. Heath Parallel Numerical Algorithms 45 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Timing MPI Programs

MPI_Wtime returns elapsed wall-clock time in seconds
since some arbitrary point in past

Elapsed time for program segment given by difference
between MPI_Wtime values at beginning and end

Process clocks are not necessarily synchronized, so clock
values are not necessarily comparable across processes,
and care must be taken in determining overall running time
for parallel program (see MPI_WTIME_IS_GLOBAL)

MPI_Wtick returns resolution of MPI_Wtime clock

Michael T. Heath Parallel Numerical Algorithms 46 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI Profiling Interface

MPI provides profiling interface via name shift for each
function
For each MPI function with prefix MPI_ , alternative
function with prefix PMPI_ provides identical functionality
Profiling library can intercept calls to each standard MPI
function name, record appropriate data, then call
equivalent alternate function to perform requested action
MPI_Pcontrol provides profiling control if profiling is in
use, but otherwise does nothing, so same code can run
with or without profiling, depending on whether executable
module is linked with profiling or nonprofiling MPI libraries
Data collected by profiling can be used for performance
analysis or visualization

Michael T. Heath Parallel Numerical Algorithms 47 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPICL Tracing Facility

MPICL is instrumentation package for MPI based on PICL
tracing facility and MPI profiling interface
http://www.csm.ornl.gov/picl/

In addition to tracing MPI events, MPICL also provides
tracing of user-defined events

Resulting trace file contains one event record per line, with
each event record containing numerical data specifying
event type, timestamp, process rank, message length, etc

Trace data output format is suitable for input to ParaGraph
visualization tool

Michael T. Heath Parallel Numerical Algorithms 48 / 64

http://www.csm.ornl.gov/picl/

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPICL Tracing Commands

tracefiles(char *tempfile, char *permfile,
int verbose);

tracelevel(int mpicl, int user, int trace);

tracenode(int tracesize, int flush,
int sync);

traceevent(char *eventtype, int eventid,
int nparams, int *params);

Michael T. Heath Parallel Numerical Algorithms 49 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Example: MPICL Tracing

#include <mpi.h>
void main(int argc, char **argv) {
int k, myid, nprocs, ntasks, work;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) tracefiles("", "tracefile", 0);
tracelevel(1, 1, 0);
tracenode(100000, 0, 1);
for (k = 0; k < ntasks; k++) {

traceevent("entry", k, 0);
{code for task k, including MPI calls}

work = work done in task k;
traceevent("exit", k, 1, &work); }

MPI_Finalize(); }

Michael T. Heath Parallel Numerical Algorithms 50 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPICL Pcontrol Interface

All MPICL tracing facilities can also be accessed through
standard MPI_Pcontrol function

Value of level argument to MPI_Pcontrol determines
which MPICL tracing command is invoked, as specified in
header file pcontrol.h

Michael T. Heath Parallel Numerical Algorithms 51 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Example: MPICL Tracing Using MPI Pcontrol

#include <mpi.h>
#include <pcontrol.h>
void main(int argc, char **argv) {
int k, myid, nprocs, ntasks, work;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0)

MPI_Pcontrol(TRACEFILES, "", "tracefile", 0);
MPI_Pcontrol(TRACELEVEL, 1, 1, 0);
MPI_Pcontrol(TRACENODE, 100000, 0, 1);
for (k = 0; k < ntasks; k++) {
MPI_Pcontrol(TRACEEVENT, "entry", k, 0);

{code for task k, including MPI calls}
work = work done in task k;
MPI_Pcontrol(TRACEEVENT, "exit", k, 1, &work); }

MPI_Finalize(); }

Michael T. Heath Parallel Numerical Algorithms 52 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

ParaGraph Visualization Tool

ParaGraph is graphical display tool for visualizing behavior and
performance of parallel programs that use MPI http:
//www.csar.illinois.edu/software/paragraph/

ParaGraph provides graphical answers to questions such as
Is particular process busy or idle at any given time?
Which processes are communicating with each other?
What part of program is executing at any given time?

Michael T. Heath Parallel Numerical Algorithms 53 / 64

http://www.csar.illinois.edu/software/paragraph/
http://www.csar.illinois.edu/software/paragraph/

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Visualizing Trace Data

Trace data gathered by MPICL during execution of MPI
program are replayed pictorially to provide dynamic
depiction of behavior of parallel program as well as
graphical performance summaries

Trace file is produced by MPICL in node order, but must be
in time order for input to ParaGraph

Appropriate reordering can be accomplished by following
Unix command:

sort +2n -3 +1rn -2 +0rn -1 tracefile.raw > tracefile.trc

Michael T. Heath Parallel Numerical Algorithms 54 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

Visualizing Trace Data

Performance data can be viewed from many different
visual perspectives to gain insights that might be missed
by any single view

ParaGraph provides about thirty different visual displays,
most of which are one of three basic types:

processor utilization
interprocessor communication
user-defined tasks

Most displays change dynamically to provide graphical
animation of program behavior

ParaGraph is extensible so users can add new displays,
specific to given application

Michael T. Heath Parallel Numerical Algorithms 55 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators
Virtual Process Topologies
Performance Monitoring and Visualization

MPI Performance Analysis Tools

Jumpshot and SLOG
http://www.mcs.anl.gov/perfvis/

Intel Trace Analyzer (formerly Vampir)
http://www.hiperism.com/PALVAMP.htm

IPM: Integrated Performance Monitoring
http://ipm-hpc.sourceforge.net/

mpiP: Lightweight, Scalable MPI Profiling
http://mpip.sourceforge.net/

TAU: Tuning and Analysis Utilities
http://www.cs.uoregon.edu/research/tau/home.php

Michael T. Heath Parallel Numerical Algorithms 56 / 64

http://www.mcs.anl.gov/perfvis/
http://www.hiperism.com/PALVAMP.htm
http://ipm-hpc.sourceforge.net/
http://mpip.sourceforge.net/
http://www.cs.uoregon.edu/research/tau/home.php

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

OpenMP

Shared memory model, SPMD
Extends C and Fortran with directives (annotations) and
functions
Relies on programmer to provide information that may be
difficult for compiler to determine
No concurrency except when directed; typically, most lines
of code run on single processor/core
Parallel loops described with directives

#pragma omp parallel for default(none) shared() private()
for (...) {
}

!$OMP PARALLEL DO DEFAULT(NONE) SHARED() PRIVATE()
do i=1, n

...
!$OMP END PARALLEL DO

Michael T. Heath Parallel Numerical Algorithms 57 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

More OpenMP

omp_get_thread_num() – returns number of active
threads within parallel region
omp_get_num_procs() – returns number of available
cores

General parallel blocks of code (excuted by all available
threads) described as

#pragma omp parallel
{
}

!$OMP PARALLEL
...
!$OMP END PARALLEL

Michael T. Heath Parallel Numerical Algorithms 58 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Race Conditions

Example:

sum = 0.0;
#pragma omp parallel for private(i)

for (i=0; i<n; i++) { sum += u[i]; }

Race condition : result of updates to sum depend on which
thread wins race in performing store to memory

OpenMP provides reduction clause for this case:

sum = 0.0;
#pragma omp parallel for reduction(+:sum) private(i)

for (i=0; i<n; i++) { sum += u[i]; }

Not hypothetical example: on one dual-processor system, first
loop computes wrong result roughly half of time

Michael T. Heath Parallel Numerical Algorithms 59 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Example: OpenMP Program for 1-D Laplace Example

#include <omp.h>
int main(int argc, char **argv) {
int k, i, nit=10;
float alpha = 1.0, beta = 2.0;
float u0[MAX_U], u1[MAX_U];
float * restrict u0p=u0, * restrict u1p=u1, *tmp;

u0[0] = u1[0] = alpha;
u0[MAX_U-1] = u1[MAX_U-1] = beta;
for (k=0; k<nit; k++) {

#pragma omp parallel for default(none) shared(u1p,u0p) private (i)
for (i = 1; i < MAX_U-1; i++) {

u1p[i] = (u0p[i-1]+u0p[i+1])/2.0;
}
tmp = u1p; u1p = u0p; u0p = tmp; /* swap pointers */

}

}

Michael T. Heath Parallel Numerical Algorithms 60 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – General

A. H. Karp, Programming for parallelism, IEEE Computer
20(9):43-57, 1987

B. P. Lester, The Art of Parallel Programming, 2nd ed., 1st
World Publishing, 2006

C. Lin and L. Snyder, Principles of Parallel Programming,
Addison-Wesley, 2008

P. Pacheco, An Introduction to Parallel Programming,
Morgan Kaufmann, 2011

M. J. Quinn, Parallel Programming in C with MPI and
OpenMP, McGraw-Hill, 2003

B. Wilkinson and M. Allen, Parallel Programming, 2nd ed.,
Prentice Hall, 2004

Michael T. Heath Parallel Numerical Algorithms 61 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – MPI
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed., MIT
Press, 2000

P. S. Pacheco, Parallel Programming with MPI, Morgan
Kaufmann, 1997

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI: The Complete Reference, Vol. 1, The MPI Core, 2nd ed.,
MIT Press, 1998

W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir, MPI: The Complete
Reference, Vol. 2, The MPI Extensions, MIT Press, 1998

MPI Forum, MPI: A Message-Passing Interface Standard,
Version 3.0, http://www.mpi-forum.org/docs/mpi-3.0/
mpi30-report.pdf

Michael T. Heath Parallel Numerical Algorithms 62 / 64

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – Other Parallel Systems

B. Chapman, G. Jost, and R. van der Pas, Using OpenMP,
MIT Press, 2008

D. B. Kirk and W. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann,
2010

J. Kepner, Parallel MATLAB for Multicore and Multinode
Camputers, SIAM, Philadelphia, 2009

P. Luszczek, Parallel programming in MATLAB, Internat. J.
High Perf. Comput. Appl., 23:277-283, 2009

Michael T. Heath Parallel Numerical Algorithms 63 / 64

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – Performance Visualization
T. L. Casavant, ed., Special issue on parallel performance
visualization, J. Parallel Distrib. Comput. 18(2), June 1993

M. T. Heath and J. A. Etheridge, Visualizing performance of
parallel programs, IEEE Software 8(5):29-39, 1991

M. T. Heath, Recent developments and case studies in
performance visualization using ParaGraph, G. Haring and
G. Kotsis, eds., Performance Measurement and Visualization of
Parallel Systems, pp. 175-200, Elsevier Science Publishers,
1993

G. Tomas and C. W. Ueberhuber, Visualization of Scientific
Parallel Programs, LNCS 771, Springer, 1994

O. Zaki, E. Lusk, W. Gropp and D. Swider, Toward Scalable
Performance Visualization with Jumpshot, Internat. J. High Perf.
Comput. Appl., 13:277-288, 1999

Michael T. Heath Parallel Numerical Algorithms 64 / 64

	Parallel Programming Paradigms
	MPI — Message-Passing Interface
	MPI Basics
	Communication and Communicators
	Virtual Process Topologies
	Performance Monitoring and Visualization

	OpenMP — Portable Shared Memory Programming

