
Computational Model
Design Methodology

Example

Parallel Numerical Algorithms
Chapter 2 – Parallel Algorithm Design

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath Parallel Numerical Algorithms 1 / 36

Computational Model
Design Methodology

Example

Outline

1 Computational Model

2 Design Methodology
Partitioning
Communication
Agglomeration
Mapping

3 Example

Michael T. Heath Parallel Numerical Algorithms 2 / 36

Computational Model
Design Methodology

Example

Computational Model

Task : sequential program and its local storage

Parallel computation : two or more tasks executing
concurrently

Communication channel : link between two tasks over
which messages can be sent and received

send is nonblocking : sending task resumes execution
immediately
receive is blocking : receiving task blocks execution until
requested message is available

Michael T. Heath Parallel Numerical Algorithms 3 / 36

Computational Model
Design Methodology

Example

Example: Laplace Equation in 1-D

Consider Laplace equation in 1-D

u′′(t) = 0

on interval a < t < b with BC

u(a) = α, u(b) = β

Seek approximate solution values ui ≈ u(ti) at mesh points
ti = a+ ih, i = 0, . . . , n+ 1, where h = (b− a)/(n+ 1)

Michael T. Heath Parallel Numerical Algorithms 4 / 36

Computational Model
Design Methodology

Example

Example: Laplace Equation in 1-D

Finite difference approximation

u′′(ti) ≈
ui+1 − 2ui + ui−1

h2

yields tridiagonal system of algebraic equations

ui+1 − 2ui + ui−1
h2

= 0, i = 1, . . . , n,

for ui, i = 1, . . . , n, where u0 = α and un+1 = β

Starting from initial guess u(0), compute Jacobi iterates

u
(k+1)
i =

u
(k)
i−1 + u

(k)
i+1

2
, i = 1, . . . , n,

for k = 1, . . . until convergence

Michael T. Heath Parallel Numerical Algorithms 5 / 36

Computational Model
Design Methodology

Example

Example: Laplace Equation in 1-D

Define n tasks, one for each ui, i = 1, . . . , n

Task i stores initial value of ui and updates it at each
iteration until convergence

To update ui, necessary values of ui−1 and ui+1 obtained
from neighboring tasks i− 1 and i+ 1

u1 u2 u3 un•••

Tasks 1 and n determine u0 and un+1 from BC

Michael T. Heath Parallel Numerical Algorithms 6 / 36

Computational Model
Design Methodology

Example

Example: Laplace Equation in 1-D

initialize ui
for k = 1, . . .

if i > 1, send ui to task i− 1
if i < n, send ui to task i+ 1
if i < n, recv ui+1 from task i+ 1
if i > 1, recv ui−1 from task i− 1
wait for sends to complete
ui = (ui−1 + ui+1)/2

end

{ send to left neighbor }
{ send to right neighbor }
{ receive from right neighbor }
{ receive from left neighbor }

{ update my value }

Michael T. Heath Parallel Numerical Algorithms 7 / 36

Computational Model
Design Methodology

Example

Mapping Tasks to Processors

Tasks must be assigned to physical processors for
execution

Tasks can be mapped to processors in various ways,
including multiple tasks per processor

Semantics of program should not depend on number of
processors or particular mapping of tasks to processors

Performance usually sensitive to assignment of tasks to
processors due to concurrency, workload balance,
communication patterns, etc

Computational model maps naturally onto
distributed-memory multicomputer using message passing

Michael T. Heath Parallel Numerical Algorithms 8 / 36



Computational Model
Design Methodology

Example

Other Models of Parallel Computation

PRAM — Parallel Random Access Machine

LogP — Latency/Overhead/Gap/Processors

BSP — Bulk Synchronous Parallel

CSP — Communicating Sequential Processes

Linda — Tuple Space

and many others

Michael T. Heath Parallel Numerical Algorithms 9 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Four-Step Design Methodology

Partition : Decompose problem into fine-grain tasks,
maximizing number of tasks that can execute concurrently

Communicate : Determine communication pattern among
fine-grain tasks, yielding task graph with fine-grain tasks
as nodes and communication channels as edges

Agglomerate : Combine groups of fine-grain tasks to form
fewer but larger coarse-grain tasks, thereby reducing
communication requirements

Map : Assign coarse-grain tasks to processors, subject to
tradeoffs between communication costs and concurrency

Michael T. Heath Parallel Numerical Algorithms 10 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Four-Step Design Methodology

Problem

Partition Co
mm
un
ica
te Agglom

erate M
ap

Michael T. Heath Parallel Numerical Algorithms 11 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Graph Embeddings

Target network may be virtual network topology, with
nodes usually called processes rather than processors

Overall design methodology is composed of sequence of
graph embeddings:

fine-grain task graph to coarse-grain task graph
coarse-grain task graph to virtual network graph
virtual network graph to physical network graph

Depending on circumstances, one or more of these
embeddings may be skipped

Target system may automatically map processes of virtual
network topology to processors of physical network

Michael T. Heath Parallel Numerical Algorithms 12 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Partitioning Strategies

Domain decomposition : subdivide geometric domain into
subdomains
Functional decomposition : subdivide system into multiple
components
Independent tasks : subdivide computation into tasks that
do not depend on each other (embarrassingly parallel )
Array parallelism : simultaneous operations on entries of
vectors, matrices, or other arrays
Divide-and-conquer : recursively divide problem into
tree-like hierarchy of subproblems
Pipelining : break problem into sequence of stages for
each of sequence of objects

Michael T. Heath Parallel Numerical Algorithms 13 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Desirable Properties of Partitioning

Maximum possible concurrency in executing resulting
tasks

Many more tasks than processors

Number of tasks, rather than size of each task, grows as
overall problem size increases

Tasks reasonably uniform in size

Redundant computation or storage avoided

Michael T. Heath Parallel Numerical Algorithms 14 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Example: Domain Decomposition

3-D domain partitioned along one (left), two (center), or all
three (right) of its dimensions

With 1-D or 2-D partitioning, minimum task size grows with
problem size, but not with 3-D partitioning

Michael T. Heath Parallel Numerical Algorithms 15 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Communication Patterns

Communication pattern determined by data dependences
among tasks: because storage is local to each task, any
data stored or produced by one task and needed by
another must be communicated between them

Communication pattern may be
local or global
structured or random
persistent or dynamically changing
synchronous or sporadic

Michael T. Heath Parallel Numerical Algorithms 16 / 36



Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Desirable Properties of Communication

Frequency and volume minimized

Highly localized (between neighboring tasks)

Reasonably uniform across channels

Network resources used concurrently

Does not inhibit concurrency of tasks

Overlapped with computation as much as possible

Michael T. Heath Parallel Numerical Algorithms 17 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Agglomeration

Increasing task sizes can reduce communication but also
reduces potential concurrency

Subtasks that can’t be executed concurrently anyway are
obvious candidates for combining into single task

Maintaining balanced workload still important

Replicating computation can eliminate communication and
is advantageous if result is cheaper to compute than to
communicate

Michael T. Heath Parallel Numerical Algorithms 18 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Example: Laplace Equation in 1-D

Combine groups of consecutive mesh points ti and
corresponding solution values ui into coarse-grain tasks,
yielding p tasks, each with n/p of ui values

ur+1ul−1 ul ur••• ••••••

Communication is greatly reduced, but ui values within
each coarse-grain task must be updated sequentially

Michael T. Heath Parallel Numerical Algorithms 19 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Example: Laplace Equation in 1-D

initialize ul, . . . , ur
for k = 1, . . .

if j > 1, send ul to task j − 1
if j < p, send ur to task j + 1
if j < p, recv ur+1 from task j + 1
if j > 1, recv ul−1 from task j − 1
for i = l to r

ūi = (ui−1 + ui+1)/2
end
wait for sends to complete
u = ū

end

{ send to left neighbor }
{ send to right neighbor }
{ receive from right neighbor }
{ receive from left neighbor }

{ update local values }

Michael T. Heath Parallel Numerical Algorithms 20 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Overlapping Communication and Computation

Updating of solution values ui is done only after all
communication has been completed, but only two of those
values actually depend on awaited data

Since communication is often much slower than
computation, initiate communication by sending all
messages first, then update all “interior” values while
awaiting values from neighboring tasks

Much (possibly all ) of updating can be done while task
would otherwise be idle awaiting messages

Performance can often be enhanced by overlapping
communication and computation in this manner

Michael T. Heath Parallel Numerical Algorithms 21 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Example: Laplace Equation in 1-D

initialize ul, . . . , ur
for k = 1, . . .

if j > 1, send ul to task j − 1
if j < p, send ur to task j + 1
for i = l + 1 to r − 1

ūi = (ui−1 + ui+1)/2
end
if j < p, recv ur+1 from task j + 1
ūr = (ur−1 + ur+1)/2
if j > 1, recv ul−1 from task j − 1
ūl = (ul−1 + ul+1)/2
wait for sends to complete
u = ū

end

{ send to left neighbor }
{ send to right neighbor }

{ update local values }

{ receive from right neighbor }
{ update local value }
{ receive from left neighbor }
{ update local value }

Michael T. Heath Parallel Numerical Algorithms 22 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Surface-to-Volume Effect

For domain decomposition,
computation is proportional to volume of subdomain
communication is (roughly) proportional to surface area of
subdomain

Higher-dimensional decompositions have more favorable
surface-to-volume ratio

Partitioning across more dimensions yields more
neighboring subdomains but smaller total volume of
communication than partitioning across fewer dimensions

Michael T. Heath Parallel Numerical Algorithms 23 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Mapping

As with agglomeration, mapping of coarse-grain tasks to
processors should maximize concurrency, minimize
communication, maintain good workload balance, etc

But connectivity of coarse-grain task graph is inherited
from that of fine-grain task graph, whereas connectivity of
target interconnection network is independent of problem

Communication channels between tasks may or may not
correspond to physical connections in underlying
interconnection network between processors

Michael T. Heath Parallel Numerical Algorithms 24 / 36



Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Mapping

Two communicating tasks can be assigned to
one processor, avoiding interprocessor communication but
sacrificing concurrency
two adjacent processors, so communication between the
tasks is directly supported, or
two nonadjacent processors, so message routing is
required

In general, finding optimal solution to these tradeoffs is
NP-complete, so heuristics are used to find effective
compromise

Michael T. Heath Parallel Numerical Algorithms 25 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Mapping

For many problems, task graph has regular structure that
can make mapping easier

If communication is mainly global, then communication
performance may not be sensitive to placement of tasks on
processors, so random mapping may be as good as any

Random mappings sometimes used deliberately to avoid
communication hot spots, where some communication
links are oversubscribed with message traffic

Michael T. Heath Parallel Numerical Algorithms 26 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Mapping Strategies

With tasks and processors consecutively numbered in
some ordering,

block mapping : blocks of n/p consecutive tasks are
assigned to successive processors
cyclic mapping : task i is assigned to processor i mod p
reflection mapping : like cyclic mapping except tasks are
assigned in reverse order on alternate passes
block-cyclic mapping and block-reflection mapping : blocks
of tasks assigned to processors as in cyclic or reflection

For higher-dimensional grid, these mappings can be
applied in each dimension

Michael T. Heath Parallel Numerical Algorithms 27 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Examples of Mappings

151412 1311108 9764 5320 1

15113 714102 61391 51280 4

12113 413102 51491 61580 7

15146 713124 511102 3980 1

cyclic

block

reflection

block-cyclic

Michael T. Heath Parallel Numerical Algorithms 28 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Dynamic Mapping

If task sizes vary during computation or can’t be predicted
in advance, tasks may need to be reassigned to
processors dynamically to maintain reasonable workload
balance throughout computation

To be beneficial, gain in load balance must more than
offset cost of communication required to move tasks and
their data between processors

Dynamic load balancing usually based on local exchanges
of workload information (and tasks, if necessary), so work
diffuses over time to be reasonably uniform across
processors

Michael T. Heath Parallel Numerical Algorithms 29 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Task Scheduling

With multiple tasks per processor, execution of those tasks
must be scheduled over time

For shared-memory, any idle processor can simply select
next ready task from common pool of tasks

For distributed-memory, analogous approach is
manager/worker paradigm, with manager dispatching
tasks to workers

Manager/worker scales poorly, as manager becomes
bottleneck, so hierarchy of managers and workers
becomes necessary, or more decentralized scheme

Michael T. Heath Parallel Numerical Algorithms 30 / 36

Computational Model
Design Methodology

Example

Partitioning
Communication
Agglomeration
Mapping

Task Scheduling

For completely decentralized scheme, it can be difficult to
determine when overall computation has been completed,
so termination detection scheme is required

With multithreading, task scheduling can conveniently be
driven by availability of data: whenever executing task
becomes idle awaiting data, another task is executed

For problems with regular structure, it is often possible to
determine mapping in advance that yields reasonable load
balance and natural order of execution

Michael T. Heath Parallel Numerical Algorithms 31 / 36

Computational Model
Design Methodology

Example

Example: Atmospheric Flow Model

Fluid dynamics of atmosphere modeled by system of
partial differential equations

3-D problem domain discretized by nx × ny × nz mesh of
points

Vertical dimension (altitude) z, much smaller than
horizontal dimensions (latitude and longitude) x and y, so
nz � nx, ny

Derivatives in PDEs approximated by finite differences

Simulation proceeds through successive discrete steps in
time

Michael T. Heath Parallel Numerical Algorithms 32 / 36



Computational Model
Design Methodology

Example

Example: Atmospheric Flow Model

Partition :
Each fine-grain task computes and stores data values
(pressure, temperature, etc) for one mesh point
Typical mesh size yields 105 to 107 fine-grain tasks

Communicate :
Finite difference computations at each mesh point use
9-point horizontal stencil and 3-point vertical stencil
Solar radiation computations require communication
throughout each vertical column of mesh points
Global communication to compute total mass of air over
domain

Michael T. Heath Parallel Numerical Algorithms 33 / 36

Computational Model
Design Methodology

Example

Example: Atmospheric Flow Model

Agglomerate :
Combine horizontal mesh points in blocks of four into
coarse-grain tasks to reduce communication for finite
differences to exchanges between adjacent nodes
Combine each vertical column of mesh points into single
task to eliminate communication for solar computations
Yields nx × ny/4 coarse-grain tasks, about 103 to 105 for
typical mesh size

Map :
Cyclic or random mapping reduces load imbalance due to
solar computations

Michael T. Heath Parallel Numerical Algorithms 34 / 36

Computational Model
Design Methodology

Example

Example: Atmospheric Flow Model

Horizontal finite difference stencil for typical point (shaded
black) in mesh for atmospheric flow model before (left) and
after (right) agglomeration

Michael T. Heath Parallel Numerical Algorithms 35 / 36

Computational Model
Design Methodology

Example

References

K. M. Chandy and J. Misra, Parallel Program Design: A
Foundation, Addison-Wesley, 1988

I. T. Foster, Designing and Building Parallel Programs,
Addison-Wesley, 1995

A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing, 2nd. ed.,
Addison-Wesley, 2003

T. G. Mattson and B. A. Sanders and B. L. Massingill,
Patterns for Parallel Programming, Addison-Wesley, 2005

M. J. Quinn, Parallel Computing: Theory and Practice,
McGraw-Hill, 1994

Michael T. Heath Parallel Numerical Algorithms 36 / 36


	Computational Model
	Design Methodology
	Partitioning
	Communication
	Agglomeration
	Mapping

	Example

