
CS546: Machine Learning in NLP (Spring 2020)
http://courses.engr.illinois.edu/cs546/

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office hours: Monday, 11am—12:30pm

Lecture 9:
Transformers, ELMO

CS546 Machine Learning in NLP

Project proposals
Prepare a one minute presentation: 1 to 2 pages.
— what are you planning to do?
— why is this interesting?
— what’s your data, evaluation metric?
— what software can you build on?

Email me a PPT and PDF version of your slides
by 10am on Jan 28.

Be in class to give your presentation!

2

CS546 Machine Learning in NLP

Paper presentations
First set this Friday

You will receive an email from me with your group’s
paper assignments
— everybody needs to choose one paper (or one
section of a longer paper)
— first come, first serve
— please arrange among your group to bring in a
computer to present on (you should use a single slide
deck/computer, if possible)
— email me slides

3

CS546 Machine Learning in NLP

Today’s class
Context-Dependent Embeddings: ELMO
Transformers

4

CS447: Natural Language Processing (J. Hockenmaier)

ELMo
Deep contextualized word representations  
Peters et al., NAACL 2018

see also https://allenai.github.io/allennlp-docs/
tutorials/how_to/elmo/

5

CS546 Machine Learning in NLP

Embeddings from Language Models
Replace static embeddings (lexicon lookup) with
context-dependent embeddings (produced by a deep
neural language model) 

=> Each token’s representation is a function of  
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear
combination of its representation across layers.

=> Different layers capture different information

6

CS546 Machine Learning in NLP

ELMo architecture
— Train a multi-layer bidirectional language model  
with character convolutions on raw text

— Each layer of this language model network
computes a vector representation for each token.

— Freeze the parameters of the language model.

— For each task: train task-dependent softmax
weights to combine the layer-wise representations
into a single vector for each token jointly with a task-
specific model that uses those vectors

7

CS546 Machine Learning in NLP

ELMo’s Bidirectional language models
The forward LM is a deep LSTM that goes over the sequence
from start to end to predict token tk based on the prefix t1…tk-1:

 

Parameters: token embeddings LSTM softmax  

The backward LM is a deep LSTM that goes over the sequence
from end to start to predict token tk based on the suffix tk+1…tN:

  

Train these LMs jointly, with the same parameters for the token
representations and the softmax layer (but not for the LSTMs)

p(tk | t1, …, tk−1; Θx, ΘLSTM, Θs)

Θx ΘLSTM Θs

p(tk | tk+1, …, tN; Θx, ΘLSTM, Θs)

N

∑
k=1

(log p(tk | t1, …, tk−1; Θx, ΘLSTM, Θs) + log p(tk | tk+1, …, tN; Θx, ΘLSTM, Θs))
8

CS546 Machine Learning in NLP

ELMo’s token representations
The input token representations are purely character-
based: a character CNN, followed by linear projection
to reduce dimensionality  

“2048 character n-gram convolutional filters
with two highway layers, followed by a linear
projection to 512 dimensions”

Advantage over using fixed embeddings:  
no UNK tokens, any word can be represented

9

CS546 Machine Learning in NLP

ELMo’s token representations
Given a token representation xk, each layer j of the LSTM language
models computes a vector representation hk,j for every token k. 

With L layers, ELMo represents each token as

where and

ELMo learns softmax weights to collapse these vectors into a
single vector and a task-specific scalar :

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN) =
N�

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

��
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
��
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN) =
N�

k=1

p(tk | tk+1, tk+2, . . . , tN).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations��
h LM

k,j of tk given (tk+1, . . . , tN).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

N�

k=1

(log p(tk | t1, . . . , tk�1; �x,
��
�LSTM , �s)

+ log p(tk | tk+1, . . . , tN ; �x,
��
�LSTM , �s)) .

We tie the parameters for both the token represen-
tation (�x) and Softmax layer (�s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo
ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L + 1 representations

Rk = {xLM
k ,

��
h LM

k,j ,
��
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
��
h LM

k,j ;
��
h LM

k,j], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;�e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotask
k = E(Rk; �

task) = �task
L�

j=0

stask
j hLM

k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks
Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

2229

hLM
k,j = [h LM

k,j ; h LM
k,j] hLM

k,0 = xk

stask
j

γtask

10

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN) =
N�

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

��
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
��
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN) =
N�

k=1

p(tk | tk+1, tk+2, . . . , tN).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations��
h LM

k,j of tk given (tk+1, . . . , tN).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

N�

k=1

(log p(tk | t1, . . . , tk�1; �x,
��
�LSTM , �s)

+ log p(tk | tk+1, . . . , tN ; �x,
��
�LSTM , �s)) .

We tie the parameters for both the token represen-
tation (�x) and Softmax layer (�s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo
ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L + 1 representations

Rk = {xLM
k ,

��
h LM

k,j ,
��
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
��
h LM

k,j ;
��
h LM

k,j], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;�e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotask
k = E(Rk; �

task) = �task
L�

j=0

stask
j hLM

k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks
Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

2229

CS546 Machine Learning in NLP

How do you use ELMo?
ELMo embeddings can be used as (additional) input
to any neural model

— ELMo can be tuned with dropout and L2-regularization  
(so that all layer weights stay close to each other)
— It often helps to fine-tune the biLMs (train them further) 
on task-specific raw text

In general: concatenate with other
embeddings for token input

If the output layer of the task network operates over
token representations, ELMO embeddings can also
(additionally) be added there.

ELMotask
k

xk

11

CS546 Machine Learning in NLP

Results
ELMo gave improvements on a variety of tasks:
— question answering (SQuAD)
— entailment/natural language inference (SNLI)
— semantic role labeling (SRL)
— coreference resolution (Coref)
— named entity recognition (NER)
— sentiment analysis (SST-5)

12

TASK PREVIOUS SOTA OUR
BASELINE

ELMO +
BASELINE

INCREASE
(ABSOLUTE/
RELATIVE)

SQuAD Liu et al. (2017) 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. (2017) 88.6 88.0 88.7 ± 0.17 0.7 / 5.8%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

Textual entailment Textual entailment is the
task of determining whether a “hypothesis” is
true, given a “premise”. The Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 550K hypoth-
esis/premise pairs. Our baseline, the ESIM se-
quence model from Chen et al. (2017), uses a biL-
STM to encode the premise and hypothesis, fol-
lowed by a matrix attention layer, a local infer-
ence layer, another biLSTM inference composi-
tion layer, and finally a pooling operation before
the output layer. Overall, adding ELMo to the
ESIM model improves accuracy by an average of
0.7% across five random seeds. A five member
ensemble pushes the overall accuracy to 89.3%,
exceeding the previous ensemble best of 88.9%
(Gong et al., 2018).

Semantic role labeling A semantic role label-
ing (SRL) system models the predicate-argument
structure of a sentence, and is often described as
answering “Who did what to whom”. He et al.
(2017) modeled SRL as a BIO tagging problem
and used an 8-layer deep biLSTM with forward
and backward directions interleaved, following
Zhou and Xu (2015). As shown in Table 1, when
adding ELMo to a re-implementation of He et al.
(2017) the single model test set F1 jumped 3.2%
from 81.4% to 84.6% – a new state-of-the-art on
the OntoNotes benchmark (Pradhan et al., 2013),
even improving over the previous best ensemble
result by 1.2%.

Coreference resolution Coreference resolution
is the task of clustering mentions in text that re-
fer to the same underlying real world entities. Our
baseline model is the end-to-end span-based neu-
ral model of Lee et al. (2017). It uses a biLSTM

and attention mechanism to first compute span
representations and then applies a softmax men-
tion ranking model to find coreference chains. In
our experiments with the OntoNotes coreference
annotations from the CoNLL 2012 shared task
(Pradhan et al., 2012), adding ELMo improved the
average F1 by 3.2% from 67.2 to 70.4, establish-
ing a new state of the art, again improving over the
previous best ensemble result by 1.6% F1.

Named entity extraction The CoNLL 2003
NER task (Sang and Meulder, 2003) consists of
newswire from the Reuters RCV1 corpus tagged
with four different entity types (PER, LOC, ORG,
MISC). Following recent state-of-the-art systems
(Lample et al., 2016; Peters et al., 2017), the base-
line model uses pre-trained word embeddings, a
character-based CNN representation, two biLSTM
layers and a conditional random field (CRF) loss
(Lafferty et al., 2001), similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced
biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system
and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a
weighted average of all biLM layers, whereas Pe-
ters et al. (2017) only use the top biLM layer. As
shown in Sec. 5.1, using all layers instead of just
the last layer improves performance across multi-
ple tasks.

Sentiment analysis The fine-grained sentiment
classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves select-
ing one of five labels (from very negative to very
positive) to describe a sentence from a movie re-
view. The sentences contain diverse linguistic
phenomena such as idioms and complex syntac-

2231

CS546 Machine Learning in NLP

Using ELMo at input vs output

The supervised models for question-answering, entailment
and SRL all use sequence architectures.
— We can concatenate ELMo to the input and/or the output
of that network (with different layer weights)
—> Input always helps, Input+output often helps
—> Layer weights differ for each task

13

Task Baseline Last Only All layers
�=1 �=0.001

SQuAD 80.8 84.7 85.0 85.2
SNLI 88.1 89.1 89.3 89.5
SRL 81.6 84.1 84.6 84.8

Table 2: Development set performance for SQuAD,
SNLI and SRL comparing using all layers of the biLM
(with different choices of regularization strength �) to
just the top layer.

Task
Input
Only

Input &
Output

Output
Only

SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

tic constructions such as negations that are diffi-
cult for models to learn. Our baseline model is
the biattentive classification network (BCN) from
McCann et al. (2017), which also held the prior
state-of-the-art result when augmented with CoVe
embeddings. Replacing CoVe with ELMo in the
BCN model results in a 1.0% absolute accuracy
improvement over the state of the art.

5 Analysis

This section provides an ablation analysis to vali-
date our chief claims and to elucidate some inter-
esting aspects of ELMo representations. Sec. 5.1
shows that using deep contextual representations
in downstream tasks improves performance over
previous work that uses just the top layer, regard-
less of whether they are produced from a biLM or
MT encoder, and that ELMo representations pro-
vide the best overall performance. Sec. 5.3 ex-
plores the different types of contextual informa-
tion captured in biLMs and uses two intrinsic eval-
uations to show that syntactic information is better
represented at lower layers while semantic infor-
mation is captured a higher layers, consistent with
MT encoders. It also shows that our biLM consis-
tently provides richer representations then CoVe.
Additionally, we analyze the sensitivity to where
ELMo is included in the task model (Sec. 5.2),
training set size (Sec. 5.4), and visualize the ELMo
learned weights across the tasks (Sec. 5.5).

5.1 Alternate layer weighting schemes

There are many alternatives to Equation 1 for com-
bining the biLM layers. Previous work on con-
textual representations used only the last layer,
whether it be from a biLM (Peters et al., 2017) or
an MT encoder (CoVe; McCann et al., 2017). The
choice of the regularization parameter � is also
important, as large values such as � = 1 effec-
tively reduce the weighting function to a simple
average over the layers, while smaller values (e.g.,
� = 0.001) allow the layer weights to vary.

Table 2 compares these alternatives for SQuAD,
SNLI and SRL. Including representations from all
layers improves overall performance over just us-
ing the last layer, and including contextual rep-
resentations from the last layer improves perfor-
mance over the baseline. For example, in the
case of SQuAD, using just the last biLM layer im-
proves development F1 by 3.9% over the baseline.
Averaging all biLM layers instead of using just the
last layer improves F1 another 0.3% (comparing
“Last Only” to �=1 columns), and allowing the
task model to learn individual layer weights im-
proves F1 another 0.2% (�=1 vs. �=0.001). A
small � is preferred in most cases with ELMo, al-
though for NER, a task with a smaller training set,
the results are insensitive to � (not shown).

The overall trend is similar with CoVe but with
smaller increases over the baseline. For SNLI, av-
eraging all layers with �=1 improves development
accuracy from 88.2 to 88.7% over using just the
last layer. SRL F1 increased a marginal 0.1% to
82.2 for the �=1 case compared to using the last
layer only.

5.2 Where to include ELMo?

All of the task architectures in this paper include
word embeddings only as input to the lowest layer
biRNN. However, we find that including ELMo at
the output of the biRNN in task-specific architec-
tures improves overall results for some tasks. As
shown in Table 3, including ELMo at both the in-
put and output layers for SNLI and SQuAD im-
proves over just the input layer, but for SRL (and
coreference resolution, not shown) performance is
highest when it is included at just the input layer.
One possible explanation for this result is that both
the SNLI and SQuAD architectures use attention
layers after the biRNN, so introducing ELMo at
this layer allows the model to attend directly to the
biLM’s internal representations. In the SRL case,

2232

resentations have F1 of 69.0 and are better at
WSD then the first layer. This is competitive with
a state-of-the-art WSD-specific supervised model
using hand crafted features (Iacobacci et al., 2016)
and a task specific biLSTM that is also trained
with auxiliary coarse-grained semantic labels and
POS tags (Raganato et al., 2017a). The CoVe
biLSTM layers follow a similar pattern to those
from the biLM (higher overall performance at the
second layer compared to the first); however, our
biLM outperforms the CoVe biLSTM, which trails
the WordNet first sense baseline.

POS tagging To examine whether the biLM
captures basic syntax, we used the context repre-
sentations as input to a linear classifier that pre-
dicts POS tags with the Wall Street Journal portion
of the Penn Treebank (PTB) (Marcus et al., 1993).
As the linear classifier adds only a small amount
of model capacity, this is direct test of the biLM’s
representations. Similar to WSD, the biLM rep-
resentations are competitive with carefully tuned,
task specific biLSTMs (Ling et al., 2015; Ma and
Hovy, 2016). However, unlike WSD, accuracies
using the first biLM layer are higher than the
top layer, consistent with results from deep biL-
STMs in multi-task training (Søgaard and Gold-
berg, 2016; Hashimoto et al., 2017) and MT (Be-
linkov et al., 2017). CoVe POS tagging accuracies
follow the same pattern as those from the biLM,
and just like for WSD, the biLM achieves higher
accuracies than the CoVe encoder.

Implications for supervised tasks Taken to-
gether, these experiments confirm different layers
in the biLM represent different types of informa-
tion and explain why including all biLM layers is
important for the highest performance in down-
stream tasks. In addition, the biLM’s representa-
tions are more transferable to WSD and POS tag-
ging than those in CoVe, helping to illustrate why
ELMo outperforms CoVe in downstream tasks.

5.4 Sample efficiency

Adding ELMo to a model increases the sample ef-
ficiency considerably, both in terms of number of
parameter updates to reach state-of-the-art perfor-
mance and the overall training set size. For ex-
ample, the SRL model reaches a maximum devel-
opment F1 after 486 epochs of training without
ELMo. After adding ELMo, the model exceeds
the baseline maximum at epoch 10, a 98% relative
decrease in the number of updates needed to reach

Figure 1: Comparison of baseline vs. ELMo perfor-
mance for SNLI and SRL as the training set size is var-
ied from 0.1% to 100%.

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

the same level of performance.
In addition, ELMo-enhanced models use

smaller training sets more efficiently than mod-
els without ELMo. Figure 1 compares the per-
formance of baselines models with and without
ELMo as the percentage of the full training set is
varied from 0.1% to 100%. Improvements with
ELMo are largest for smaller training sets and
significantly reduce the amount of training data
needed to reach a given level of performance. In
the SRL case, the ELMo model with 1% of the
training set has about the same F1 as the baseline
model with 10% of the training set.

5.5 Visualization of learned weights

Figure 2 visualizes the softmax-normalized
learned layer weights. At the input layer, the
task model favors the first biLSTM layer. For
coreference and SQuAD, the this is strongly
favored, but the distribution is less peaked for
the other tasks. The output layer weights are
relatively balanced, with a slight preference for
the lower layers.

2234

CS447: Natural Language Processing (J. Hockenmaier)

Transformers
Vashwani et al. Attention is all you
need, NIPS 2017

14

CS546 Machine Learning in NLP

Transformers
Sequence transduction model based on attention
(no convolutions or recurrence)
— easier to parallelize than recurrent nets
— faster to train than recurrent nets
— captures more long-range dependencies than
CNNs with fewer parameters

Transformers use stacked self-attention and
pointwise, fully-connected layers for the encoder and
decoder

15

CS546 Machine Learning in NLP 16

Transformer
Architecture

CS546 Machine Learning in NLP

Encoder
A stack of N=6 identical layers 
All layers and sublayers are 512-dimensional
  
Each layer consists of two sublayers
— one multi-headed self attention layer
— one position-wise fully connected layer

Each sublayer has a residual connection  
and is normalized:  
LayerNorm(x + Sublayer(x))

17

CS546 Machine Learning in NLP

Decoder
A stack of N=6 identical layers 
All layers and sublayers are 512-d
  
Each layer consists of three sublayers
— one multi-headed self attention layer
 over decoder output (ignoring future tokens)
— one multi-headed attention layer  
 over encoder output
— one position-wise fully connected layer

Each sublayer has a residual connection  
and is normalized:  
LayerNorm(x + Sublayer(x))

18

CS546 Machine Learning in NLP

Self-attention w/ queries, keys, values
Let’s add learnable parameters (weight matrices),  
and turn each vector into three versions:

— Query vector
— Key vector:
— Value vector:

The attention weight of the j-th position to compute the new output  
for the i-th position depends on the query of i and the key of j (scaled):

The new output vector for the i-th position depends on  
the attention weights and value vectors of all input positions j:  

k × k
x(i)

q(i) = Wqx(i)

k(i) = Wkx(i)

v(i) = Wvx(i)

w(i)
j =

exp(q(i)k(j))/ k

∑j (exp(q(i)k(j))/ k)

y(i) = ∑
j=1..T

w(i)
j v(j)

19

CS546 Machine Learning in NLP

Scaled Dot-Product Attention

20

CS447: Natural Language Processing (J. Hockenmaier)

Multi-Head attention
— Learn h different  
 linear projections of Q,K,V
— Compute attention  
 separately on each of  
 these h versions
— Concatenate and project  
 the resultant vectors to a  
 lower dimensionality.
— Each attention head  
 can use low dimensionality

21

CS546 Machine Learning in NLP

Position-wise feedforward nets
We train a feedforward net for each layer that only
reads in input for its token  
(two linear transformations with ReLU in between) 
 
 
Input and output: 512 dimensions
Internal layer: 2048 dimensions  
 
Parameters differ from layer to layer  
(but are shared across positions)
(cf. 1x1 convolutions)

22

CS546 Machine Learning in NLP

Positional Encoding
How does this model capture sequence order?

Positional embeddings have the same dimensionality
as word embeddings (512) and are added in.

Fixed representations: each dimension is a sinuoid (a
sine or cosine function with a different frequency) 

23

