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Project proposals

Prepare a one minute presentation: 1 to 2 pages.
— what are you planning to do?

— why is this interesting?

— what’s your data, evaluation metric?
— what software can you build on?

Email me a PPT and PDF version of your slides
by 10am on Jan 28.

Be in class to give your presentation!
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Paper presentations

First set this Friday

You will receive an email from me with your group’s

paper assignments

— everybody needs to choose one paper (or one
section of a longer paper)

— first come, first serve

— please arrange among your group to bring in a
computer to present on (you should use a single slide
deck/computer, if possible)

— email me slides
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Today'’s class

Context-Dependent Embeddings: ELMO
Transformers
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ELMo

Deep contextualized word representations
Peters et al., NAACL 2018

see also https://allenai.github.io/allennlp-docs/
tutorials/now_to/elmo/
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t.mbeddings from Language Models

Replace static embeddings (lexicon lookup) with
context-dependent embeddings (produced by a deep
neural language model)

=> Each token’s representation is a function of
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear
combination of its representation across layers.

=> Different layers capture different information
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ELMo architecture

— Train a multi-layer bidirectional language model
with character convolutions on raw text

— Each layer of this language model network
computes a vector representation for each token.

— Freeze the parameters of the language model.

— For each task: train task-dependent softmax
weights to combine the layer-wise representations
iInto a single vector for each token jointly with a task-
specific model that uses those vectors
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ELMo’s Bidirectional language models

The forward LM is a deep LSTM that goes over the sequence

from start to end to predict token tx bgsed on the prefix t1...tk-1:

PG|ty oo s 13 O Oy, ©)
%
Parameters: token embeddings ®, LSTM O, ¢, softmax O,

The backward LM is a deep LSTM that goes over the sequence
from end to start to predict token txbased on the suffix ti.1...tn:

@
PG| tiits - 0 Ol Oy O))

Train these LMs jointly, with the same parameters for the token
representations and the softmax layer (but not for the LSTMs)
N

— —
Z <logp(tk 115 s 11213 O Oy Op) +10g p(G [ 1115 -5 1y O, Oy ®s)>
k=1
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ELMo’s token representations

The input token representations are purely character-
based: a character CNN, followed by linear projection
to reduce dimensionality

*2048 character n-gram convolutional filters
with two highway layers, followed by a linear
projection to 512 dimensions”

Advantage over using fixed embeddings:
no UNK tokens, any word can be represented
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ELMo’s token representations

Given a token representation X«, each layer j of the LSTM language
models computes a vector representation hgjfor every token k.

With L layers, ELMo represents each token as

%
r =GR
— {hLM’J '7L}7

where hLM = [hLM hLM] and hko = X,

ELMo learns softmax weights Sijk to collapse these vectors into a

single vector and a task-specific scalar ;/mSk:

ask ask ask ask LM
ELMo}"** = E(Ry; 0" ok Z; hj Y
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How do you use ELMo?

ELMo embeddings can be used as (additional) input

to any neural model
— ELMo can be tuned with dropout and L2-regularization
(so that all layer weights stay close to each other)
— It often helps to fine-tune the biLMs (train them further)

on task-specific raw text

In general: concatenate ELMo{™" with other

embeddings X, for token input

If the output layer of the task network operates over
token representations, ELMO embeddings can also

(additionally) be added there.
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Results

ELMo gave improvements on a variety of tasks:
— question answering (SQUAD)

— entailment/natural language inference (SNLI)
— semantic role labeling (SRL)

— coreference resolution (Coref)

— named entity recognition (NER)

— sentiment analysis (SST-5)

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuetal. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 &+ 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 547 £ 0.5 3.3/6.8%
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Using ELMo at input vs output

Input Input & | Output
Task Only Output | Only
SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

i 5/6
2/3
I 1/2
1/3

1/6

Input Layer

Output Layer 0

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

The supervised models for question-answering, entailment
and SRL all use sequence architectures.

— We can concatenate ELMo to the input and/or the output
of that network (with different layer weights)

—> Input always helps, Input+output often helps

—> Layer weights differ for each task
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Transformers

Vashwani et al. Attention is all you
need, NIPS 2017
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Transformers

Sequence transduction model based on attention
(no convolutions or recurrence)

— easier to parallelize than recurrent nets

— faster to train than recurrent nets

— captures more long-range dependencies than
CNNs with fewer parameters

Transformers use stacked self-attention and

pointwise, fully-connected layers for the encoder and
decoder
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Transformer
Architecture
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Figure 1: The Transformer - model architecture.



Encoder

A stack of N=6 identical layers  ~aErem)
All layers and sublayers are 512-dimensional Forvard
A
Each layer consists of two sublayers & e ]
_ 1o " Attention
one multi-headed self attention layer .

— one position-wise fully connected layer N I

Each sublayer has a residual connection
and is normalized:

LayerNorm(x + Sublayer(x))
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Decoder

A stack of N=6 identical layers
All layers and sublayers are 512-d

Each layer consists of three sublayers
— one multi-headed self attention layer

over decoder output (ignoring future tokens)

— one multi-headed attention layer
over encoder output
— one position-wise fully connected layer

Each sublayer has a residual connection
and is normalized:
LayerNorm(x + Sublayer(x))
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Self-attention w/ queries, keys, values

Let’s add learnable parameters (k X k weight matrices),
and turn each vector x”) into three versions:

— Query vector ¢ = W x¥
— Key vector: k() = WkX(i)
— Value vector: v\ = W x)

The attention weight of the j-th position to compute the new output
for the i-th position depends on the query of i and the key of j (scaled):

(N
L) — exp(q kD) /A/k
T X exp(@@k)//k)

The new output vector for the i-th position depends on
the attention weights and value vectors of all input positions j:

y@ = 2 wj(l)v(ﬁ
j=1..T
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Scaled Dot-Product Attention

QK"

Attention(Q, K, V) = softmax(
Vdy
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Multi-Head attention

— Learn h different
linear projections of Q,K,V

— Compute attention
separately on each of
these h versions

— Concatenate and project
the resultant vectors to a
lower dimensionality.

— Each attention head
can use low dimensionality

[ Concat ]

It

Scaled Dot-Product "
Attention

MultiHead(Q, K, V) = Concat(heady, ..., head;, )W
where head; = Attention(QWiQ, K WiK : VWiV)
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Position-wise feedforward nets

We train a feedforward net for each layer that only
reads in input for its token
(two linear transformations with ReLU in between)

FFN(CB) = maX(O, SCWl + bl)WQ + b2

Input and output: 512 dimensions
Internal layer: 2048 dimensions

Parameters differ from layer to layer

(but are shared across positions)
(cf. 1x1 convolutions)
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Positional Encoding

How does this model capture sequence order?

Positional embeddings have the same dimensionality
as word embeddings (512) and are added in.

Fixed representations: each dimension is a sinuoid (a
sine or cosine function with a different frequency)

P E(pos 2y = sin(pos/10000%"/ )
PE(pos 2i+1) = cos(pos/10000%"/ o)
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