CS546: Machine Learning in NLP (Spring 2020)

http.//courses.engr.illinois.edu/cs546/

Lecture 9:
Transformers, ELMO

Julia Hockenmaier
juliahmr@illinois.edu

3324 Siebel Center

Office hours: Monday, 11am—12:30pm

Project proposals

Prepare a one minute presentation: 1 to 2 pages.
— what are you planning to do?

— why is this interesting?

— what’s your data, evaluation metric?
— what software can you build on?

Email me a PPT and PDF version of your slides
by 10am on Jan 28.

Be in class to give your presentation!

CS546 Machine Learning in NLP

Paper presentations

First set this Friday

You will receive an email from me with your group’s

paper assignments

— everybody needs to choose one paper (or one
section of a longer paper)

— first come, first serve

— please arrange among your group to bring in a
computer to present on (you should use a single slide
deck/computer, if possible)

— email me slides

CS546 Machine Learning in NLP

Today'’s class

Context-Dependent Embeddings: ELMO
Transformers

CS546 Machine Learning in NLP

ELMo

Deep contextualized word representations
Peters et al., NAACL 2018

see also https://allenai.github.io/allennlp-docs/
tutorials/now_to/elmo/

CS447: Natural Language Processing (J. Hockenmaier)

t.mbeddings from Language Models

Replace static embeddings (lexicon lookup) with
context-dependent embeddings (produced by a deep
neural language model)

=> Each token’s representation is a function of
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear
combination of its representation across layers.

=> Different layers capture different information

CS546 Machine Learning in NLP 6

ELMo architecture

— Train a multi-layer bidirectional language model
with character convolutions on raw text

— Each layer of this language model network
computes a vector representation for each token.

— Freeze the parameters of the language model.

— For each task: train task-dependent softmax
weights to combine the layer-wise representations
iInto a single vector for each token jointly with a task-
specific model that uses those vectors

CS546 Machine Learning in NLP

ELMo’s Bidirectional language models

The forward LM is a deep LSTM that goes over the sequence

from start to end to predict token tx bgsed on the prefix t1...tk-1:

PG|ty oo s 13 O Oy, ©)
%
Parameters: token embeddings ®, LSTM O, ¢, softmax O,

The backward LM is a deep LSTM that goes over the sequence
from end to start to predict token txbased on the suffix ti.1...tn:

@
PG| tiits - 0 Ol Oy O))

Train these LMs jointly, with the same parameters for the token
representations and the softmax layer (but not for the LSTMs)
N

— —
Z <logp(tk 115 s 11213 O Oy Op) +10g p(G [1115 -5 1y O, Oy ®s)>
k=1

CS546 Machine Learning in NLP 8

ELMo’s token representations

The input token representations are purely character-
based: a character CNN, followed by linear projection
to reduce dimensionality

*2048 character n-gram convolutional filters
with two highway layers, followed by a linear
projection to 512 dimensions”

Advantage over using fixed embeddings:
no UNK tokens, any word can be represented

CS546 Machine Learning in NLP 9

ELMo’s token representations

Given a token representation X«, each layer j of the LSTM language
models computes a vector representation hgjfor every token k.

With L layers, ELMo represents each token as

%
r =GR
— {hLM’J '7L}7

where hLM = [hLM hLM] and hko = X,

ELMo learns softmax weights Sijk to collapse these vectors into a

single vector and a task-specific scalar ;/mSk:

ask ask ask ask LM
ELMo}"** = E(Ry; 0" ok Z; hj Y

CS546 Machine Learning in NLP 10

How do you use ELMo?

ELMo embeddings can be used as (additional) input

to any neural model
— ELMo can be tuned with dropout and L2-regularization
(so that all layer weights stay close to each other)
— It often helps to fine-tune the biLMs (train them further)

on task-specific raw text

In general: concatenate ELMo{™" with other

embeddings X, for token input

If the output layer of the task network operates over
token representations, ELMO embeddings can also

(additionally) be added there.

CS546 Machine Learning in NLP

Results

ELMo gave improvements on a variety of tasks:
— question answering (SQUAD)

— entailment/natural language inference (SNLI)
— semantic role labeling (SRL)

— coreference resolution (Coref)

— named entity recognition (NER)

— sentiment analysis (SST-5)

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuetal. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 &+ 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 547 £ 0.5 3.3/6.8%

CS546 Machine Learning in NLP

12

Using ELMo at input vs output

Input Input & | Output
Task Only Output | Only
SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

i 5/6
2/3
I 1/2
1/3

1/6

Input Layer

Output Layer 0

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

The supervised models for question-answering, entailment
and SRL all use sequence architectures.

— We can concatenate ELMo to the input and/or the output
of that network (with different layer weights)

—> Input always helps, Input+output often helps

—> Layer weights differ for each task

CS546 Machine Learning in NLP

13

Transformers

Vashwani et al. Attention is all you
need, NIPS 2017

CS447: Natural Language Processing (J. Hockenmaier) 14

Transformers

Sequence transduction model based on attention
(no convolutions or recurrence)

— easier to parallelize than recurrent nets

— faster to train than recurrent nets

— captures more long-range dependencies than
CNNs with fewer parameters

Transformers use stacked self-attention and

pointwise, fully-connected layers for the encoder and
decoder

CS546 Machine Learning in NLP 15

Transformer
Architecture

CS546 Machine Learning in NLP

Output

Probabilities
)
| Softmax |
| Linear)
A
4 N\
[Add & Norm }=~
Feed
Forward
) [
- R Add & Norm
) Multi-Head
Feed Attention
Forward I D) N x
“ (J~
Add & Norm
N x I
~—>| Add & Norm J Mackod
Multi-Head Multi-Head
Attention Attention
_ J . —)
Positional Positional
Encod 9 ¢ -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Encoder

A stack of N=6 identical layers ~aErem)
All layers and sublayers are 512-dimensional Forvard
A
Each layer consists of two sublayers & e]
_ 1o " Attention
one multi-headed self attention layer .

— one position-wise fully connected layer N I

Each sublayer has a residual connection
and is normalized:

LayerNorm(x + Sublayer(x))

CS546 Machine Learning in NLP 17

Decoder

A stack of N=6 identical layers
All layers and sublayers are 512-d

Each layer consists of three sublayers
— one multi-headed self attention layer

over decoder output (ignoring future tokens)

— one multi-headed attention layer
over encoder output
— one position-wise fully connected layer

Each sublayer has a residual connection
and is normalized:
LayerNorm(x + Sublayer(x))

CS546 Machine Learning in NLP

—t)
| Add & Norm <=~

Feed
Forward

L

| Add & Norm <~

Multi-Head
Attention

Jd 2 2)

| Add & Norm Je=

Masked
Multi-Head
Attention

.

—tr

— ')

18

Self-attention w/ queries, keys, values

Let’s add learnable parameters (k X k weight matrices),
and turn each vector x”) into three versions:

— Query vector ¢ = W x¥
— Key vector: k() = WkX(i)
— Value vector: v\ = W x)

The attention weight of the j-th position to compute the new output
for the i-th position depends on the query of i and the key of j (scaled):

(N
L) — exp(q kD) /A/k
T X exp(@@k)//k)

The new output vector for the i-th position depends on
the attention weights and value vectors of all input positions j:

y@ = 2 wj(l)v(ﬁ
j=1..T
CS546 Machine Learning in NLP 19

Scaled Dot-Product Attention

QK"

Attention(Q, K, V) = softmax(
Vdy

1%

Scaled Dot-Product Attention

|

MatMul

)
SoftMax
4
Mask (opt.)
)

Scale

)
MatMul

t 1

Q KV

CS546 Machine Learning in NLP 20

Multi-Head attention

— Learn h different
linear projections of Q,K,V

— Compute attention
separately on each of
these h versions

— Concatenate and project
the resultant vectors to a
lower dimensionality.

— Each attention head
can use low dimensionality

[Concat]

It

Scaled Dot-Product "
Attention

MultiHead(Q, K, V) = Concat(heady, ..., head;,)W
where head; = Attention(QWiQ, K WiK : VWiV)

CS447: Natural Language Processing (J. Hockenmaier)

21

Position-wise feedforward nets

We train a feedforward net for each layer that only
reads in input for its token
(two linear transformations with ReLU in between)

FFN(CB) = maX(O, SCWl + bl)WQ + b2

Input and output: 512 dimensions
Internal layer: 2048 dimensions

Parameters differ from layer to layer

(but are shared across positions)
(cf. 1x1 convolutions)

CS546 Machine Learning in NLP 22

Positional Encoding

How does this model capture sequence order?

Positional embeddings have the same dimensionality
as word embeddings (512) and are added in.

Fixed representations: each dimension is a sinuoid (a
sine or cosine function with a different frequency)

P E(pos 2y = sin(pos/10000%"/)
PE(pos 2i+1) = cos(pos/10000%"/ o)

CS546 Machine Learning in NLP 23

