Learning to Generate Product Reviews from Attributes

Authors: Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou and Ke Xu
Presenter: Yimeng Zhou
Introduction

- Presents an **attention-enhanced attribute-to-sequence model** to generate product reviews for given attribute information such as user, product and rating.
Introduction

Challenges:

- Variety of candidate reviews that satisfy the input attributes.
- Unknown or latent factors that influence the generated reviews, which renders the generation process non-deterministic.
- Rating explicitly determine the usage of sentiment words.
- User and product implicitly influence word usage.
Compared to Prior work

- Most previous work focuses on using rule-based methods or machine learning techniques for sentiment classification, which classifies reviews into different sentiment categories.

- In contrast, this model is mainly evaluated on the review generation task rather than classification. Moreover, it uses an attention mechanism in encoder-decoder model.
Model - Overview

- Input attributes \(a = (a_1, \cdots, a_{|a|}) \)
- Generate product review \(r = (y_1, \cdots, y_{|r|}) \) to maximize the conditional probability \(p(r|a) \)
- \(|a|\) is fixed to 3 with userID, productid and rating.
The model learns to compute the likelihood of generated reviews given input attributes.

This conditional probability $p(r|a)$ is decomposed to

$$p(r|a) = \prod_{t=1}^{\|r\|} p(y_t|y_{<t}, a)$$

where $y_{<t} = (y_1, \cdots, y_{t-1})$.

(1)
Model – Three parts

- Attribute Encoder
- Sequence Decoder
- Attention Mechanism

- Att2seq model without attention mechanism
Model – Attribute Encoder

- Use multilayer perceptrons to encode input attributes into vector representations that are used as latent factors for generating reviews.

- Input attributes a are represented by low-dimensional vectors. The attribute a_i's vector $g(a_i)$ is computed via

$$g(a_i) = W_i^a e(a_i)$$

- Where $W_i^a \in \mathbb{R}^{m \times |a_i|}$ is a parameter matrix and $e(a_i)$ is a one-hot vector representing the presence or absence of a_i.
Model – Attribute Encoder

Then these attribute vectors are concatenated and fed into a hidden layer which outputs the encoding vector. The output of the hidden layer is computed as:

\[a = \tanh \left(H[g(a_1), \ldots, g(a_{|a|})] + b_a \right) \]

(3)
The decoder is built by stacking multiple layers of recurrent neural networks with long short-term memory units to better handle long sequences.

RNNs use vectors to represent information for the current time step and recurrently compute the next hidden states.
The LSTM introduces several gates and explicit memory cells to memorize or forget information, which enables networks learn more complicated patterns.

The n-dimensional hidden vector in layer \(l \) and time step \(t \) is computed via

\[
 h_t^l = f \left(h_{t-1}^l, h_{t-1}^{l-1} \right)
\]
The LSTM unit is given by

\[
\begin{pmatrix}
i \\
f \\
o \\
g
\end{pmatrix} =
\begin{pmatrix}
\text{sigm} \\
\text{sigm} \\
\text{sigm} \\
\tanh
\end{pmatrix} W^l
\begin{pmatrix}
h^l_{t-1} \\
h^l_{t-1}
\end{pmatrix}
\]

(5)

\[
p_t^l = f \odot p_{t-1}^l + i \odot g
\]

\[
h_t^l = o \odot \tanh \left(p_t^l \right)
\]

where \(\tanh \), \(\text{sigm} \), and \(\odot \) are element-wise operators, and \(W^l \in \mathbb{R}^{4n \times 2n} \) is a weight matrix for the \(l \)-th layer.
Finally, for the vanilla model without using an attention mechanism, the predicted distribution of the t-th output word is:

\[p(y_t|y_{<t}, a) = \text{softmax}_{y_t} \left(W^p h_t^L \right) \] \hspace{1cm} (6)

where \(W^p \in \mathbb{R}^{|V_r| \times n} \) is a parameter matrix.
Model – Attention Mechanism

- Better utilize encoder-side information
- The attention mechanism learns soft alignments between generated words and attributes, and adaptively computes encoder-side context vectors used to predict the next tokens.
Model – Attention Mechanism
Model – Attention Mechanism

For the t-th time step of the decoder, we compute the attention score of attribute a_i via

$$s_t^i = \exp \left(\tanh \left(W^s \left[h_t^L, g \left(a_i \right) \right] \right) \right) / Z \quad (7)$$

- Z is a normalization term that ensures $\sum_{i=1}^{\left| a \right|} s_t^i = 1$
Then the attention context vector c^t is obtained by

$$c^t = \sum_{i=1}^{\left| a \right|} s^t_i \ g(a_i)$$

which is a weighted sum of attribute vectors.
Further employ the vector to predict the t-th output token as

$$h_{t}^{att} = \tanh \left(W_{1}c^{t} + W_{2}h_{t}^{L} \right)$$ (9)

$$p \left(y_{t} | y_{<t}, a \right) = \text{softmax}_{y_{t}} \left(W_{p}^{p}h_{t}^{att} \right)$$ (10)

where $W^{p} \in \mathbb{R}^{V_{r} \times n}$, $W_{1} \in \mathbb{R}^{n \times m}$ and $W_{2} \in \mathbb{R}^{n \times n}$ are three parameter matrices.
Model – Attention Mechanism

- Aim at maximizing the likelihood of generated reviews given input attributes for the training data.
- The optimization problem is to maximize

$$\sum_{(a,r) \in D} \log p (r | a)$$

- Avoid overfitting: insert dropout layers between different LSTM layers as suggested in Zaremba et al. (2015).
Experiments

- Dataset: built upon Amazon product data including reviews and metadata spanning.
- The whole dataset is randomly split into three parts TRAIN, DEV and TEST (70%. 10%, 20%)
- Parameter settings:
 - Dimension of Attributes vectors: 64
 - Dimension of word embeddings and hidden vectors: 512
 - Uniform distribution $[-0.08, 0.08]$
 - Batch size, smoothing constant, learning rate: 50, 0.95, 0.0002
 - Dropout rate: 0.2
 - Gradient values: $[-5, 5]$
Results

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU-4 (%)</th>
<th>BLEU-1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand</td>
<td>0.86</td>
<td>20.36</td>
</tr>
<tr>
<td>MELM</td>
<td>1.28</td>
<td>21.59</td>
</tr>
<tr>
<td>NN-pr</td>
<td>1.53</td>
<td>22.44</td>
</tr>
<tr>
<td>NN-ur</td>
<td>3.61</td>
<td>26.37</td>
</tr>
<tr>
<td>Att2Seq</td>
<td>4.51</td>
<td>30.24</td>
</tr>
<tr>
<td>Att2Seq+A</td>
<td>5.03∗</td>
<td>30.48∗</td>
</tr>
</tbody>
</table>

Table 1: Evaluation results on the TEST set of Amazon data. ∗: significantly better than the second best score (p < 0.05).
Table 2: We manually annotate some polarity labels (positive or negative) for generated reviews and compute accuracy by comparing them with the input ratings. *: significantly better than the second best accuracy ($p < 0.05$).
Results – Ablation

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU-4 (%)</th>
<th>BLEU-1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Att2Seq+A</td>
<td>5.01</td>
<td>30.23</td>
</tr>
<tr>
<td>AvgEnc</td>
<td>4.07</td>
<td>28.13</td>
</tr>
<tr>
<td>NoStack</td>
<td>4.73</td>
<td>29.58</td>
</tr>
<tr>
<td>w/o user</td>
<td>4.10</td>
<td>26.87</td>
</tr>
<tr>
<td>w/o product</td>
<td>4.13</td>
<td>27.15</td>
</tr>
<tr>
<td>w/o rating</td>
<td>4.12</td>
<td>27.98</td>
</tr>
</tbody>
</table>

Table 3: Model ablation results on the DEV set.
Results – Attention Scores

Figure 4: Examples of attention scores (Equation (7)) over three attributes. Darker color indicates higher attention score.
Results – Control Variable

<table>
<thead>
<tr>
<th>U</th>
<th>P</th>
<th>R</th>
<th>Generated Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>V</td>
<td>1</td>
<td>i’m sorry to say this was a very boring book. i didn’t finish it. i’m not a new fan of the series, but this was a disappointment.</td>
</tr>
<tr>
<td>A</td>
<td>V</td>
<td>3</td>
<td>this was a nice story. i liked the characters and the story line. i’m not sure i’d read another by this author.</td>
</tr>
<tr>
<td>A</td>
<td>V</td>
<td>5</td>
<td>this was a very good book. i enjoyed the characters and the story line. i’m looking forward to reading more in this series.</td>
</tr>
<tr>
<td>B</td>
<td>W</td>
<td>5</td>
<td>i couldn’t put it down. it was a great love story. i can’t wait to read the next one.</td>
</tr>
<tr>
<td>C</td>
<td>W</td>
<td>5</td>
<td>enjoyable story that keeps you turning the pages. the characters are well developed and the plot is excellent. i would recommend this book to anyone who enjoys a good love story.</td>
</tr>
<tr>
<td>D</td>
<td>W</td>
<td>5</td>
<td>i loved this book. i could not put it down. i loved this story and the characters. i will be reading the next book.</td>
</tr>
<tr>
<td>E</td>
<td>X</td>
<td>1</td>
<td>i read this book because i was looking for something to read. this book was just too much like the others. i thought the author was going to be a good writer, but i was disappointed.</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>i was disappointed. i read the first chapter and then i was bored. i read the whole thing, but i just couldn’t get into it.</td>
</tr>
<tr>
<td>E</td>
<td>Z</td>
<td>1</td>
<td>this book was just too much. i read the whole thing, but i didn’t like the way the author ended it. i was hoping for a different ending.</td>
</tr>
</tbody>
</table>

Table 4: U: User. P: Product. R: Rating. This table shows some generated examples of the Att2Seq+A model. In every group, two attributes are kept unchanged, while the other attribute has different values. For instance, in the first group, we use different ratings ranging from 1 (the lowest score) to 5 (the highest score) with the same user and product to generate reviews. The users and products are anonymized by A-E and V-Z.
Improvements

- Use more fine-grained attributes as the input of our model.
 - Conditioned on device specification, brand, user’s gender, product description, etc.
 - Leverage review texts without attributes to improve the sequence decoder.
Conclusion

- Proposed a novel product review generation task, in which generated reviews are conditioned on input attributes,
- Formulated a neural network based attribute-to-sequence model that uses multilayer perceptrons to encode input attributes and employs recurrent neural networks to generate reviews.
- Introduced an attention mechanism to better utilize input attribute information.
Thank you!