A large annotated corpus for learning natural language inference

Samuel R. Bowman, Gabor Angeli, Christopher Potts, Christopher D. Manning

Presenter: Medhini G Narasimhan
Outline

• Entailment and Contradiction
• Examples of Natural Language Inference
• Prior datasets for Natural Language Inference
• Shortcomings of previous work
• Stanford Natural Language Inference Corpus
• Data Collection
• Data Validation
• Models on this dataset
• Conclusion
Entailment and Contradiction

• **Entailment**: The truth of one sentence implies the truth of the other sentence.

 “It is raining heavily outside.”

 entails

 “The streets are flooded.”

• **Contradiction**: The truth of one sentence implies the falseness of the other.

 “It is cold in here.”

 contradicts

 “It is hot in here.”

• Understanding entailment and contradiction is fundamental to understanding natural language.

• **Natural Language Inference**: Determining whether a natural language hypothesis can justifiably be inferred from a natural language premise.
Examples of Natural Language Inference

Neutral

A woman with a green headscarf, blue shirt and a very big grin.

The woman is young.

Entailment

A land rover is being driven across a river.

A Land Rover is splashing water as it crosses a river.

Contradiction

An old man with a package poses in front of an advertisement.

A man walks by an ad.
Objective

To introduce a Natural Language Inference corpus which would allow for the development of improved models on entailment and contradiction and Natural Language Inference as a whole.
Prior datasets for NLI

• **Recognizing Textual Entailment (RTE)** challenge tasks:
 • High-quality, hand-labelled data sets.
 • Small in size and complex examples.

• **Sentences Involving Compositional Knowledge (SICK)** data for the SemEval 2014:
 • 4,500 training examples.
 • Partly automatic construction introduced some spurious patterns into the data.

• **Denotation Graph** entailment set:
 • Contains millions of examples of entailments between sentences and artificially constructed short phrases.
 • Labelled using fully automatic methods, hence noisy.
Issues with previous datasets

• Too small in size to train modern data-intensive wide-coverage models.

• Indeterminacies of event and entity coreference lead to indeterminacy concerning the semantic label.

• Event indeterminacy:
 • *A boat sank in the Pacific Ocean* and *A boat sank in the Atlantic Ocean*.
 • Contradiction if they refer to the same event, else neutral.

• Entity indeterminacy:
 • *A tourist visited New York* and *A tourist visited the city*.
 • If we assume coreference, this is entailment, else neutral.
Stanford Natural Language Inference corpus

• Freely available collection of 570K labelled sentence pairs, written by humans doing a novel grounded task based on image captioning.

• The labels include entailment, contradiction, and semantic independence.

• Image captions would ground examples to specific scenarios and overcome entity and event indeterminacy.

• Participants allowed to produce entirely novel sentences which led to richer examples.

• A subset of the resulting sentences were sent to a validation task in order to provide a highly reliable set of annotations.
Data Collection

• Premises obtained from Flickr30K image captioning dataset.
• Using just the captions, workers were asked to generate entailing, neutral and contradictive examples.

A female tennis player in a purple top and black skirt swings her racquet.
A female tennis player preparing to serve the ball.
A woman in a purple tank top holds a tennis racket, extends an arm upward, and looks up.
A woman wearing a purple shirt and holding a tennis racket in her hand is looking up.
Girl is waiting for the ball to come down as she plays tennis.

A man is snow boarding and jumping off of a snow hill.
A person in a black jacket is snowboarding during the evening.
A silhouette of a person snowboarding through a pile of snow.
A snowboarder flying off a snow drift with a colourful sky in the background.
The person in the parka is on a snow board.

A motorcycle races.
A motorcycle rider in a white helmet leans into a curve on a rural road.
A motorcycle rider making a turn.
Someone on a motorcycle leaning into a turn.
There is a professional motorcyclist turning a corner.
Data Collection

• The sentences in SNLI are all descriptions of scenes, and photo captions.
• Reliable judgments from untrained annotators
• Logically consistent definition of contradiction.
• Issues of coreference greatly mitigated. For example, “A dog is lying in the grass”, the main object is the dog.

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- Write one alternate caption that is definitely a true description of the photo. Example: For the caption “Two dogs are running through a field.” you could write “There are animals outdoors.”

- Write one alternate caption that might be a true description of the photo. Example: For the caption “Two dogs are running through a field.” you could write “Some puppies are running to catch a stick.”

- Write one alternate caption that is definitely a false description of the photo. Example: For the caption “Two dogs are running through a field.” you could write “The pets are sitting on a couch.” This is different from the maybe correct category because it’s impossible for the dogs to be both running and sitting.

Figure 1: The instructions used on Mechanical Turk for data collection.
Data Validation

• Measure the quality of corpus and collect additional data for test and development sets.

• Validation is done by asking four annotators to label the same pair, this gave five labels per pair.

• Based on their labelling skills, 30 trusted workers were picked.

• Sentence pair assigned a gold label if one of the three labels were chosen by at least three of the five annotators.

• Only sentence pairs with gold label used during model building.
Stanford Natural Language Inference corpus

<table>
<thead>
<tr>
<th>Description</th>
<th>Label</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A man inspects the uniform of a figure in some East Asian country.</td>
<td>contradiction</td>
<td>The man is sleeping</td>
</tr>
<tr>
<td>An older and younger man smiling.</td>
<td>neutral</td>
<td>Two men are smiling and laughing at the cats playing on the floor.</td>
</tr>
<tr>
<td>A black race car starts up in front of a crowd of people.</td>
<td>contradiction</td>
<td>A man is driving down a lonely road.</td>
</tr>
<tr>
<td>A soccer game with multiple males playing.</td>
<td>entailment</td>
<td>Some men are playing a sport.</td>
</tr>
<tr>
<td>A smiling costumed woman is holding an umbrella.</td>
<td>neutral</td>
<td>A happy woman in a fairy costume holds an umbrella.</td>
</tr>
</tbody>
</table>
Models and Results on SNLI

• Excitement Open Platform Model
 • Edit distance algorithm: Tunes the weight of the three case insensitive edit distance operations.
 • Simple lexical based classifier.

• Lexicalized feature-based classifier model
 • BLEU Score.
 • Length difference.
 • Overlap between words.
 • Indicator for every unigram and bigram.
 • Cross unigrams.
 • Cross bigrams.

<table>
<thead>
<tr>
<th>System</th>
<th>SNLI</th>
<th>SICK</th>
<th>RTE-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Distance Based</td>
<td>71.9</td>
<td>65.4</td>
<td>61.9</td>
</tr>
<tr>
<td>Classifier Based</td>
<td>72.2</td>
<td>71.4</td>
<td>61.5</td>
</tr>
<tr>
<td>+ Lexical Resources</td>
<td>75.0</td>
<td>78.8</td>
<td>63.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>SNLI Train</th>
<th>SNLI Test</th>
<th>SICK Train</th>
<th>SICK Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexicalized</td>
<td>99.7</td>
<td>78.2</td>
<td>90.4</td>
<td>77.8</td>
</tr>
<tr>
<td>Unigrams Only</td>
<td>93.1</td>
<td>71.6</td>
<td>88.1</td>
<td>77.0</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>49.4</td>
<td>50.4</td>
<td>69.9</td>
<td>69.6</td>
</tr>
</tbody>
</table>
Models and Results on SNLI

- Neural network sequence model
 - Generate vector embedding of each sentence.
 - Train classifier to label the vectors.
 - Two sequence embedding models: Plan RNN and LSTM RNN.
- Embeddings initialized with GloVE vectors.
- Lexicalized model performs better.

<table>
<thead>
<tr>
<th>Sentence model</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>100d Sum of words</td>
<td>79.3</td>
<td>75.3</td>
</tr>
<tr>
<td>100d RNN</td>
<td>73.1</td>
<td>72.2</td>
</tr>
<tr>
<td>100d LSTM RNN</td>
<td>84.8</td>
<td>77.6</td>
</tr>
</tbody>
</table>

Table 6: Accuracy in 3-class classification on our training and test sets for each model.
Conclusion

• SNLI draws fairly extensively on common sense knowledge.
• Hypothesis and premise sentences often differ structurally in significant ways.
• Sentences collected are largely fluent, correctly spelled English.
• Basic models were introduced which have been outperformed.
• Future directions – Using entailment and contradiction pairs to generate question answers on Flickr30k.
Questions?
Thank You!