Context and Spatial Layout

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Final project reminders

- Posters on Friday, May 11 at 7pm (two rounds, 1.25 hr each) in atrium
- Keep your project topic and group updated here; will be used for scheduling posters https://docs.google.com/spreadsheets/d/1optR3El54YSnsPfu X6sk2FLQ1ZxpjT3eEpm1JjQvieg/edit?usp=drive_web
- 2-page papers and materials due May 12 on compass
- Cannot accept late papers/posters due to grading deadlines

Today's class: Context and 3D Scenes

Context in Recognition

 Objects usually are surrounded by a scene that can provide context in the form of nearby objects, surfaces, scene category, geometry, etc.

Context provides clues for function

• What is this?

Context provides clues for function

• What is this?

Now can you tell?

Sometimes context is *the* major component of recognition

• What is this?

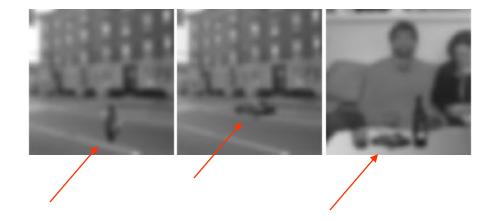
Sometimes context is *the* major component of recognition

• What is this?

Now can you tell?

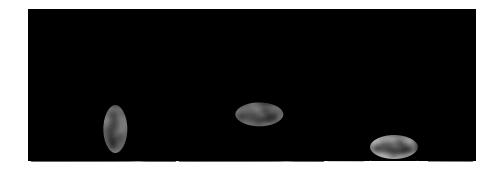
More Low-Res

• What are these blobs?



More Low-Res

The same pixels! (a car)



There are many types of context

Local pixels

window, surround, image neighborhood, object boundary/shape, global image statistics

2D Scene Gist

global image statistics

3D Geometric

3D scene layout, support surface, surface orientations, occlusions, contact points, etc.

Semantic

 event/activity depicted, scene category, objects present in the scene and their spatial extents, keywords

Photogrammetric

camera height orientation, focal length, lens distorition, radiometric, response function

Illumination

sun direction, sky color, cloud cover, shadow contrast, etc.

Geographic

GPS location, terrain type, land use category, elevation, population density, etc.

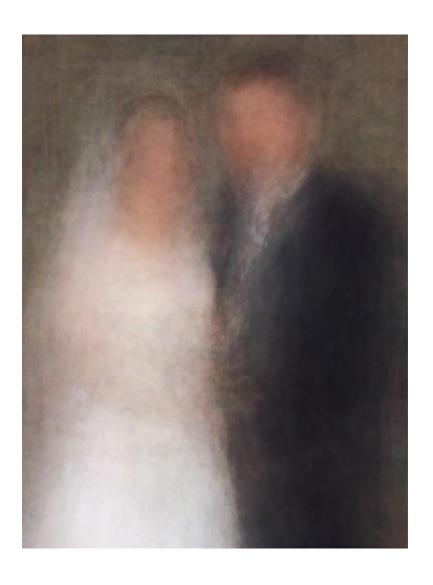
Temporal

nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture

Cultural

photographer bias, dataset selection bias, visual cliches, etc.

Cultural context

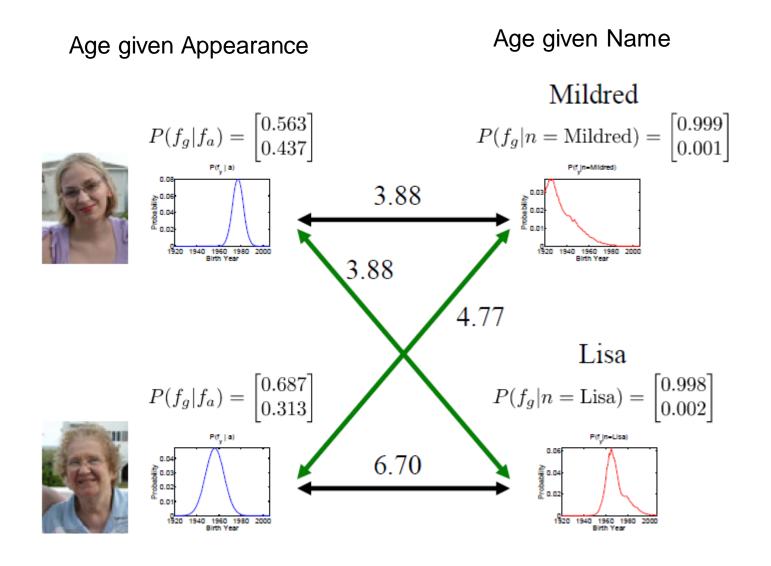


Jason Salavon: http://salavon.com/SpecialMoments/Newlyweds.shtml

Cultural context

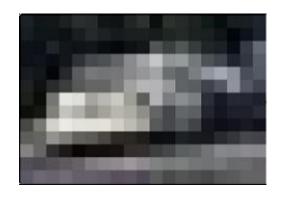
"Mildred and Lisa": Who is Mildred? Who is Lisa?

Cultural context

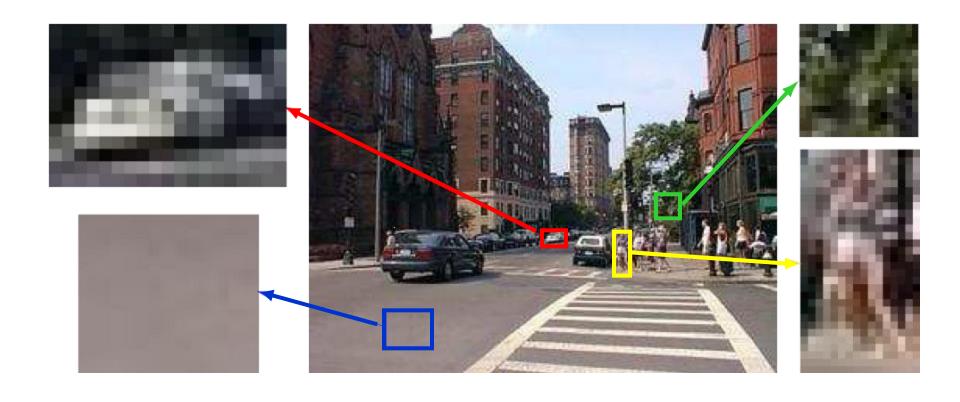


Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

1. Context for recognition



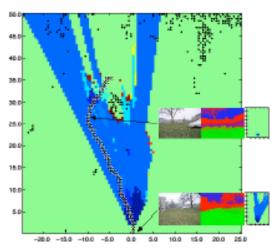
1. Context for recognition



- 1. Context for recognition
- 2. Scene understanding

- 1. Context for recognition
- 2. Scene understanding
- 3. Many direct applications
 - a) Assisted driving
 - b) Robot navigation/interaction
 - c) 2D to 3D conversion for 3D TV
 - d) Object insertion

3D Reconstruction: Input, Mesh, Novel View



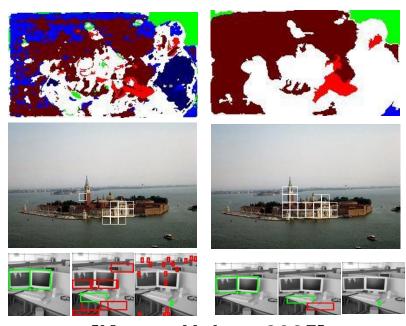
Robot Navigation: Path Planning

Spatial Layout: 2D vs. 3D?

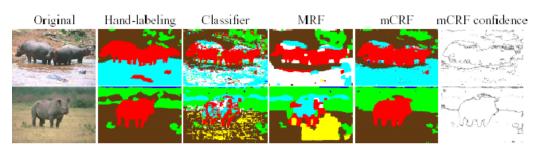
Context in Image Space



[Torralba Murphy Freeman 2004]

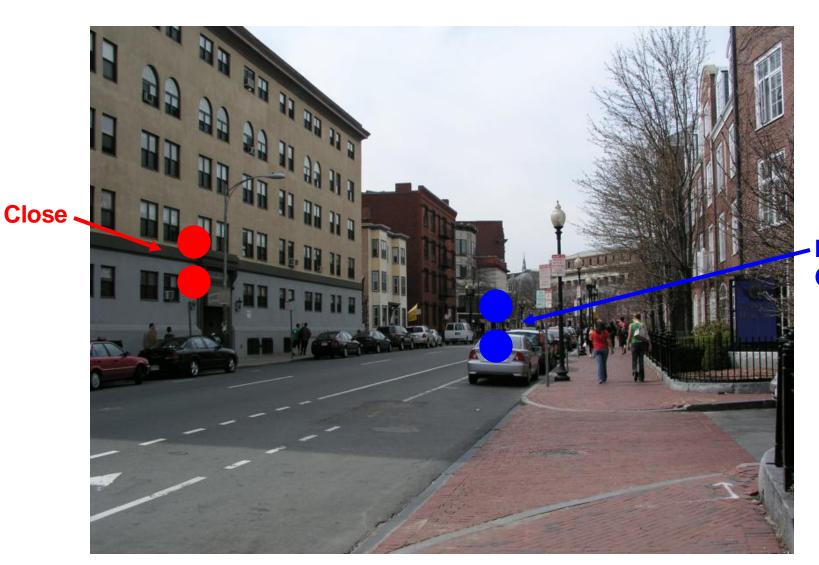


[Kumar Hebert 2005]



[He Zemel Cerreira-Perpiñán 2004]

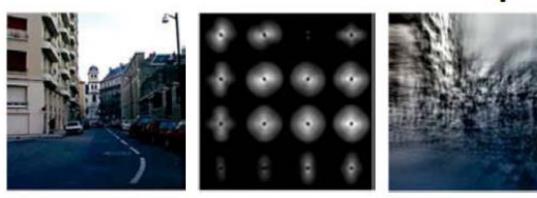
But object relations are in 3D...



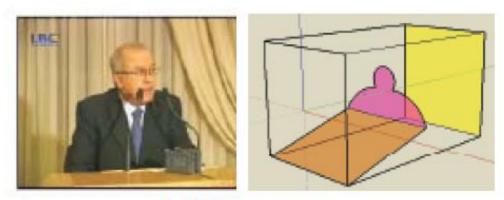
Not Close How to represent scene space?

Wide variety of possible representations

Scene-Level Geometric Description



a) Gist, Spatial Envelope



b) Stages

Retinotopic Maps

c) Geometric Context

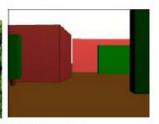
d) Depth Maps

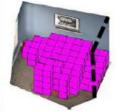
Highly Structured 3D Models

e) Ground Plane

f) Ground Plane with Billboards

g) Ground Plane with Walls





h) Blocks World

i) 3D Box Model

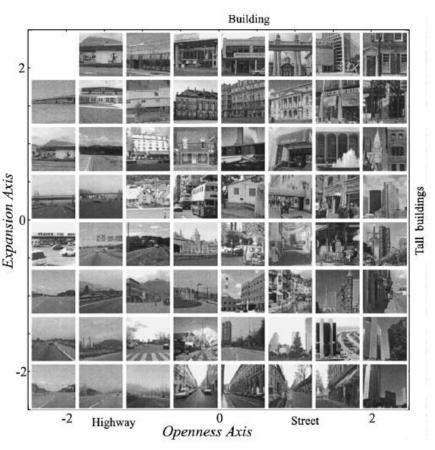
Key Trade-offs

- Level of detail: rough "gist", or detailed point cloud?
 - Precision vs. accuracy
 - Difficulty of inference

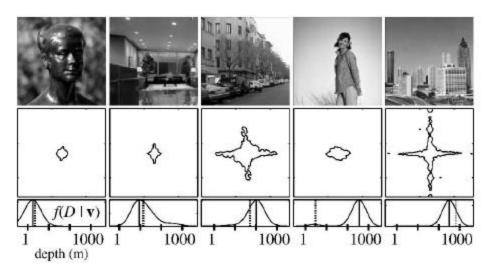
- Abstraction: depth at each pixel, or ground planes and walls?
 - What is it for: e.g., metric reconstruction vs. navigation

Low detail, Low/Med abstraction

Holistic Scene Space: "Gist"



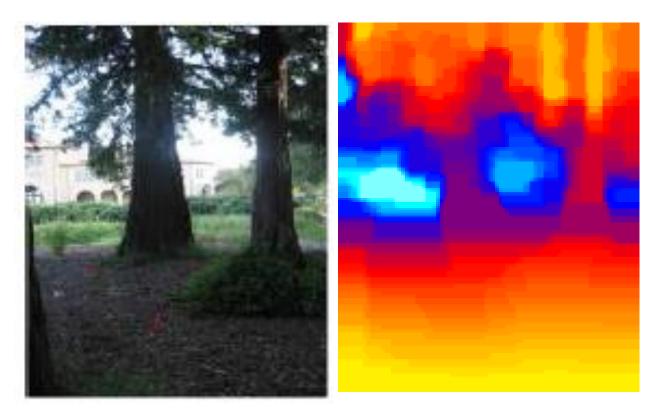
Oliva & Torralba 2001



Torralba & Oliva 2002

High detail, Low abstraction

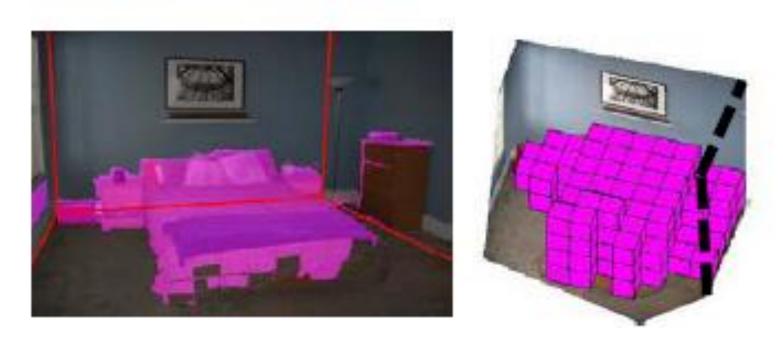
Depth Map



Saxena, Chung & Ng 2005, 2007

Medium detail, High abstraction

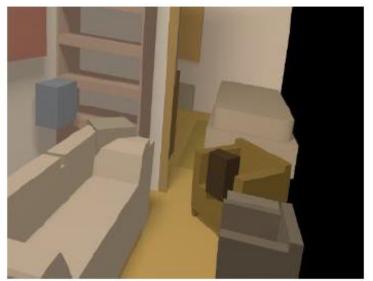
Room as a Box



Hedau Hoiem Forsyth 2009

Med-High detail, High abstraction

Complete 3D Layout



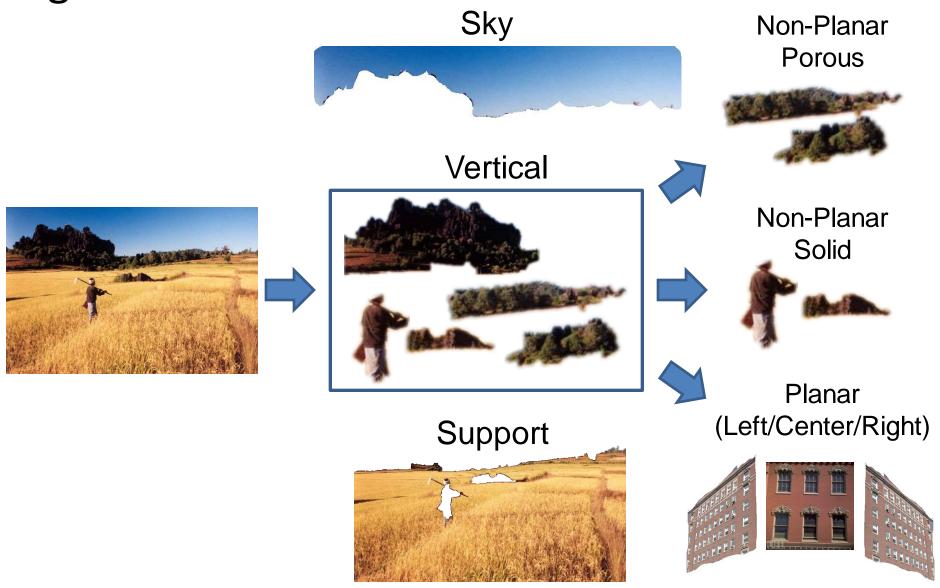
Examples of spatial layout estimation

- Surface layout
 - Application to 3D reconstruction

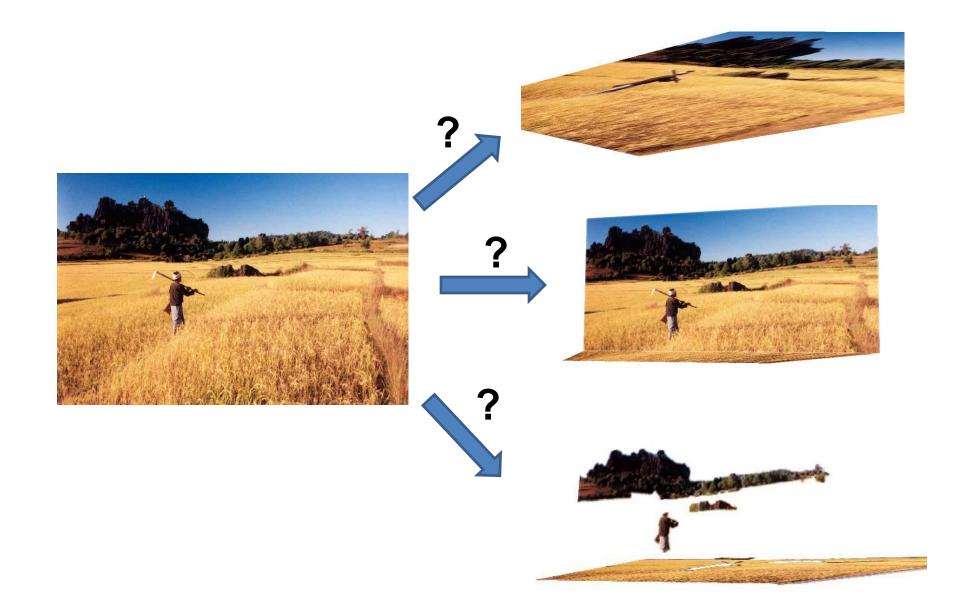
- The room as a box
 - Application to object recognition

Complete layout and objects from depth

Surface Layout: describe 3D surfaces with geometric classes



The challenge



Our World is Structured

Abstract World

Our World

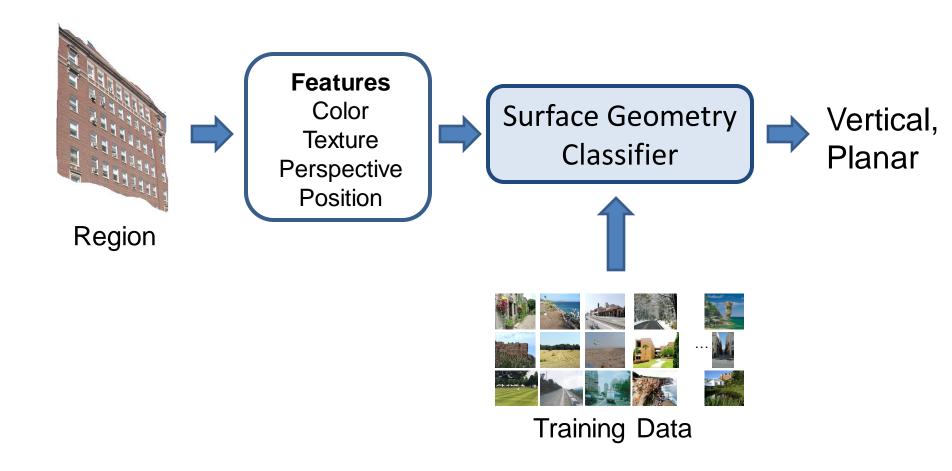
Learn the Structure of the World

Training Images

Infer the most likely interpretation

Unlikely

Geometry estimation as recognition



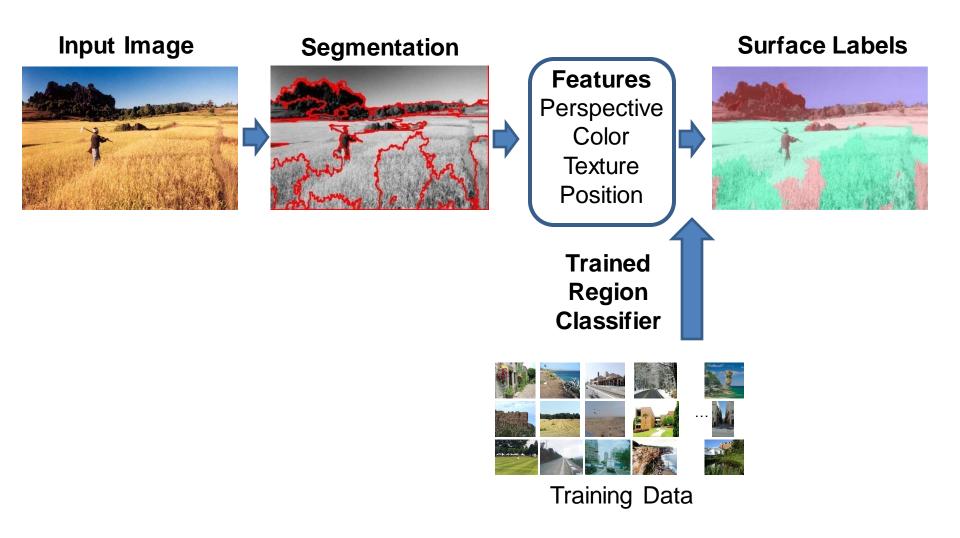
Use a variety of image cues

Vanishing points, lines

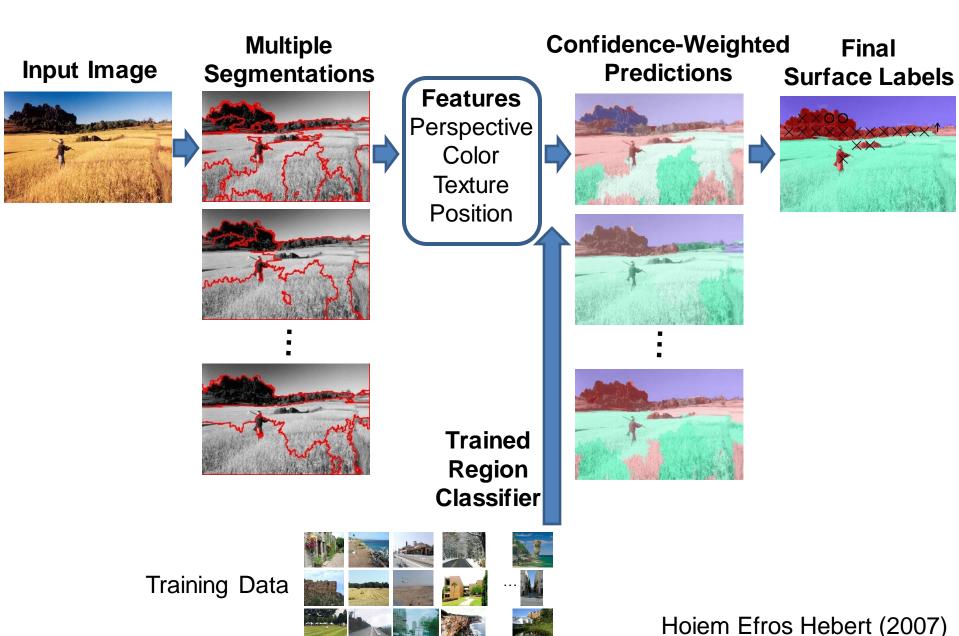
Color, texture, image location

Texture gradient

Surface Layout Algorithm

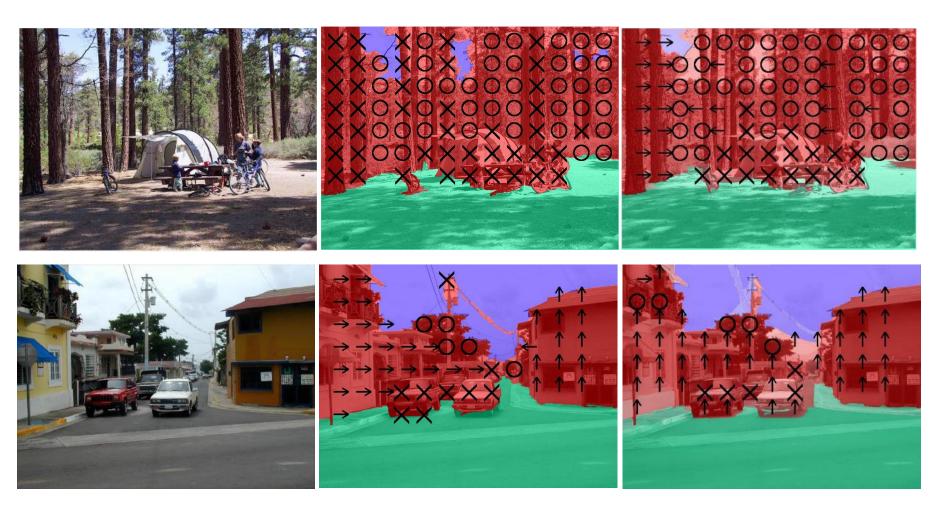


Surface Layout Algorithm



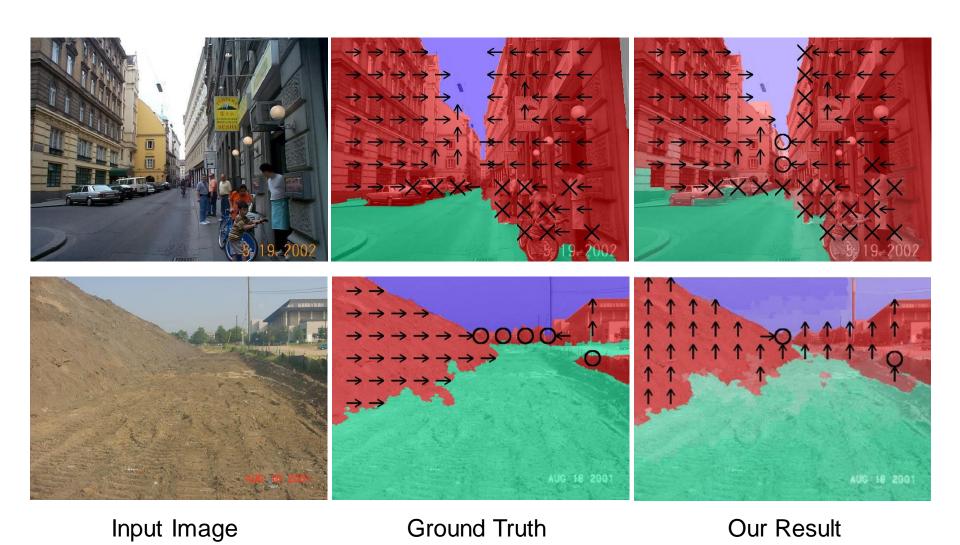
Surface Description Result

Results

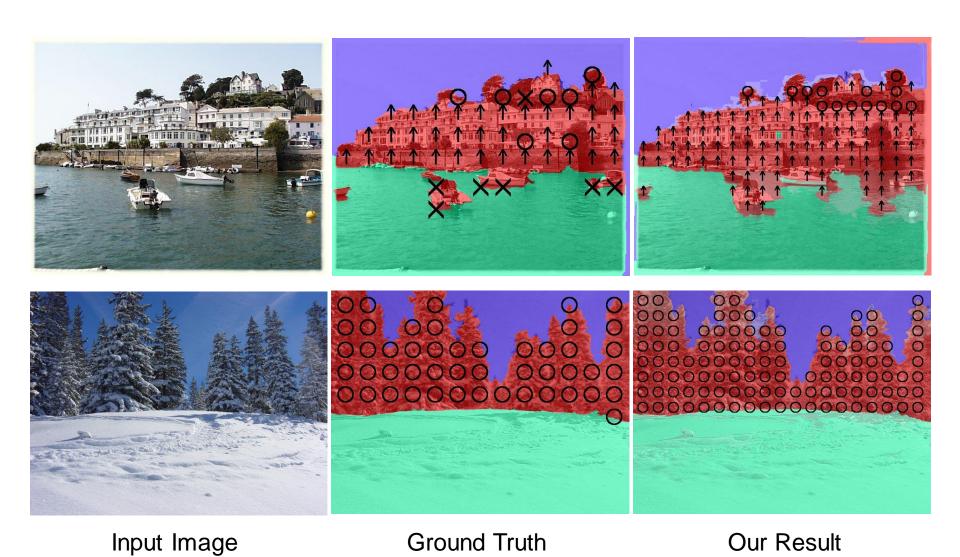


Input Image Ground Truth Our Result

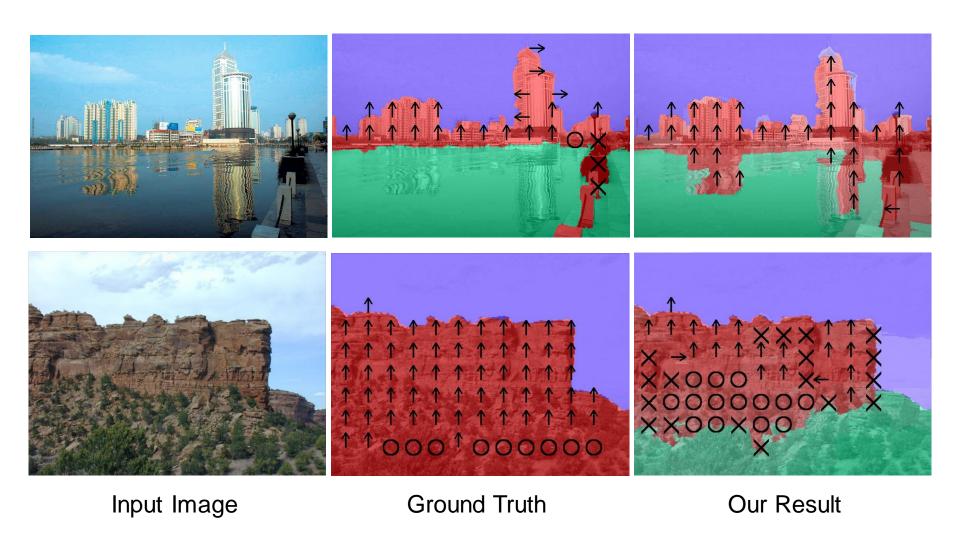
Results



Results



Failures: Reflections, Rare Viewpoint



Average Accuracy

Main Class: 88%

Subclasses: 61%

Main Class						
	Support	Vertical	Sky			
Support	0.84	0.15	0.00			
Vertical	0.09	0.90	0.02			
Sky	0.00	0.10	0.90			

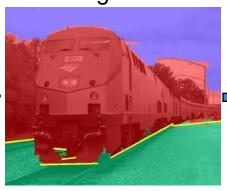
Vertical Subclass							
	Left	Center	Right	Porous	Solid		
Left	0.37	0.32	0.08	0.09	0.13		
Center	0.05	0.56	0.12	0.16	0.12		
Right	0.02	0.28	0.47	0.13	0.10		
Porous	0.01	0.07	0.03	0.84	0.06		
Solid	0.04	0.20	0.04	0.17	0.55		

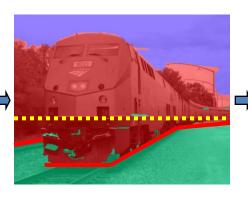
Automatic Photo Popup

Labeled Image

Fit Ground-Vertical Boundary with Line Segments Form Segments into Polylines

Cut and Fold

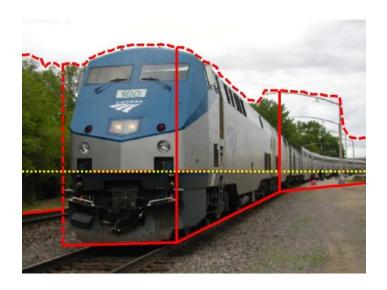




Final Pop-up Model

Automatic Photo Popup

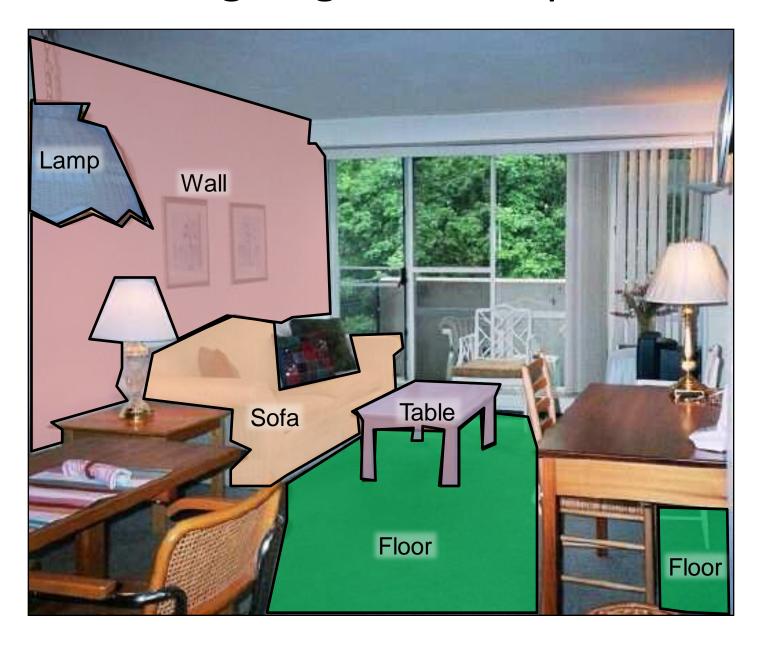
Mini-conclusions



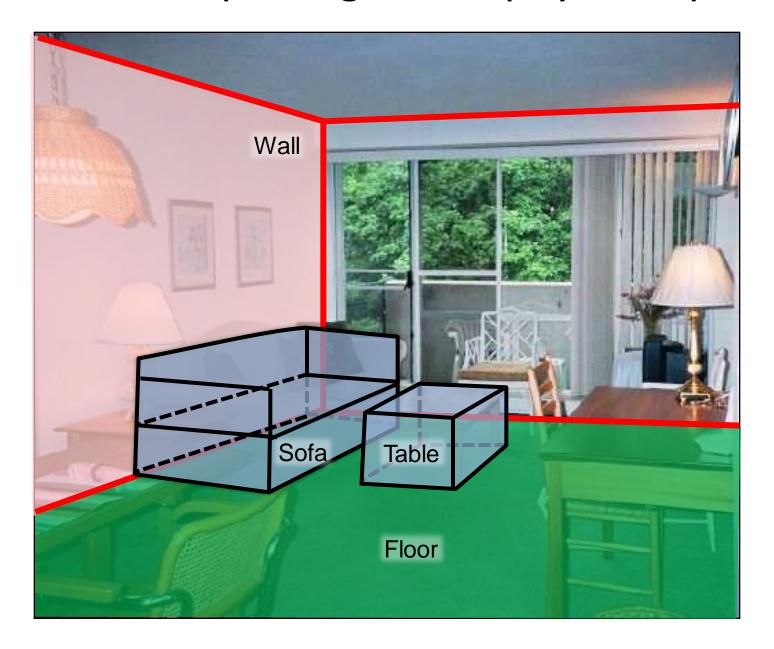
Can learn to predict surface geometry from a single image

Interpretation of indoor scenes

Vision = assigning labels to pixels?



Vision = interpreting within physical space



Physical space needed for affordance

Is this a good

place to sit?

Could I stand over here?

Can I put my cup here?

Walkable path

Physical space needed for recognition

Apparent shape depends strongly on viewpoint

Physical space needed for recognition

Physical space needed to predict appearance

Physical space needed to predict appearance

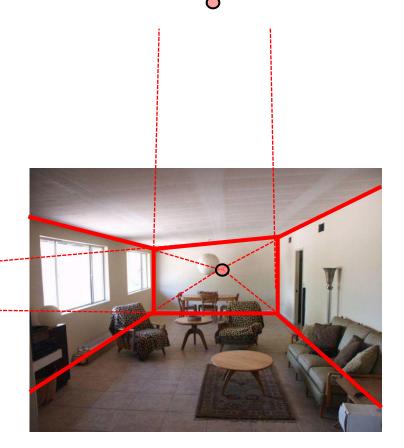
Key challenges

- How to represent the physical space?
 - Requires seeing beyond the visible

- How to estimate the physical space?
 - Requires simplified models
 - Requires learning from examples

Our Box Layout

- Room is an oriented 3D box
 - Three vanishing points specify orientation
 - Two pairs of sampled rays specify position/size



Our Box Layout

- Room is an oriented 3D box
 - Three vanishing points (VPs) specify orientation
 - Two pairs of sampled rays specify position/size

Another box consistent with the same vanishing points

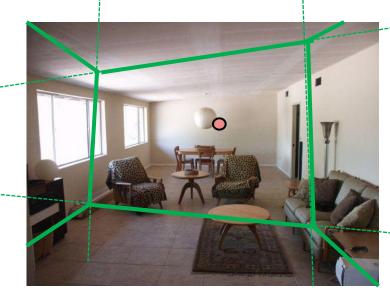
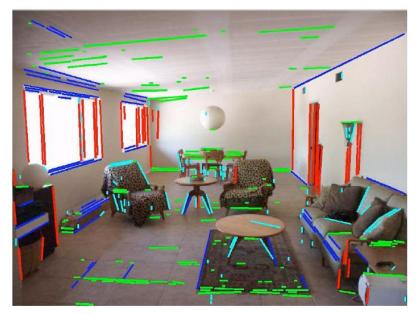
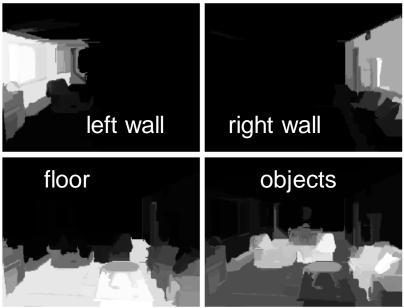


Image Cues for Box Layout

- Straight edges
 - Edges on floor/wall surfaces are usually oriented towards VPs
 - Edges on objects might mislead

- Appearance of visible surfaces
 - Floor, wall, ceiling,
 object labels should be consistent with box





Box Layout Algorithm

- 1. Detect edges
- 2. Estimate 3 orthogonal vanishing points

- Apply region classifier to label pixels with visible surfaces
 - Boosted decision trees on region based on color, texture, edges, position

4. Generate box candidates by sampling pairs of rays from VPs

- 5. Score each box based on edges and pixel labels
 - Learn score via structured learning
- 6. Jointly refine box layout and pixel labels to get final estimate

Evaluation

- Dataset: 308 indoor images
 - Train with 204 images, test with 104 images

Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Experimental results

- Joint reasoning of surface label / box layout helps
 - Pixel error: $26.5\% \rightarrow 21.2\%$
 - Corner error: $7.4\% \rightarrow 6.3\%$

Similar performance for cluttered and uncluttered rooms

Mini-Conclusions

- Can fit a 3D box to the rooms boundaries from one image
 - Make your model as simple as possible to provide robustness

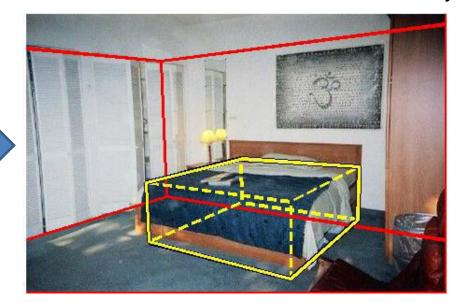
Using room layout to improve object detection

Box layout helps

- Predict the appearance of objects, because they are often aligned with the room
- Predict the position and size of objects, due to physical constraints and size consistency

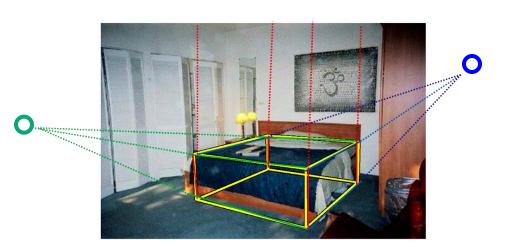
2D Bed Detection

3D Bed Detection with Scene Geometry



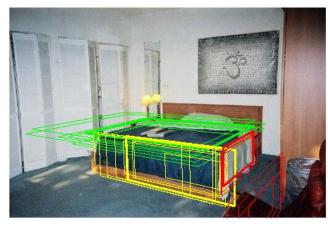
Hedau, Hoiem, Forsyth, ECCV 2010, CVPR 2012

Search for objects in room coordinates



Recover Room Coordinates

Rectify Features to Room Coordinates



Rectified Sliding Windows

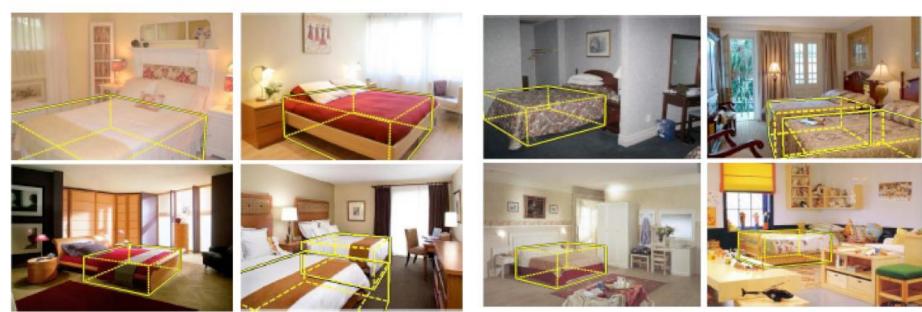
Reason about 3D room and bed space

Joint Inference with Priors

- Beds close to walls
- Beds within room
- Consistent bed/wall size
- Two objects cannot occupy the same space

Hedau Forsyth Hoiem (2010)

3D Bed Detection from an Image

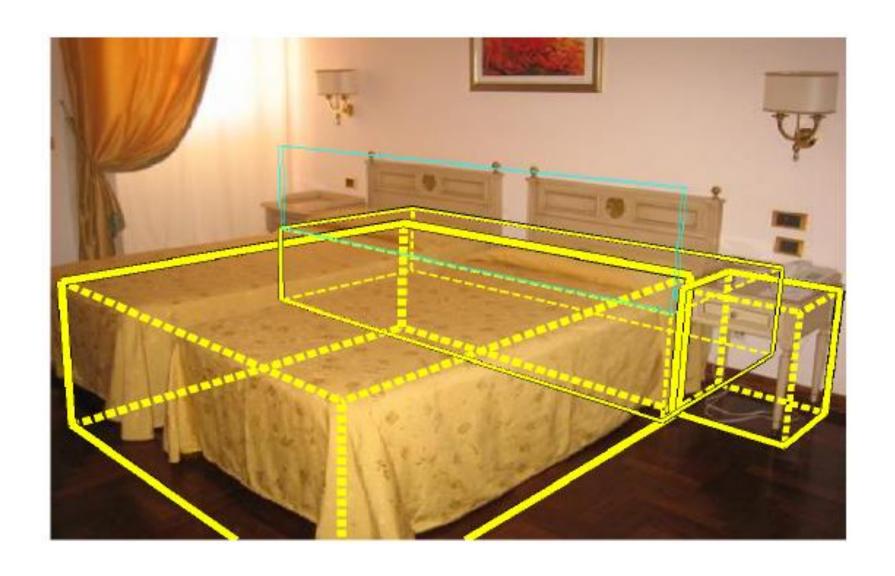


True positives

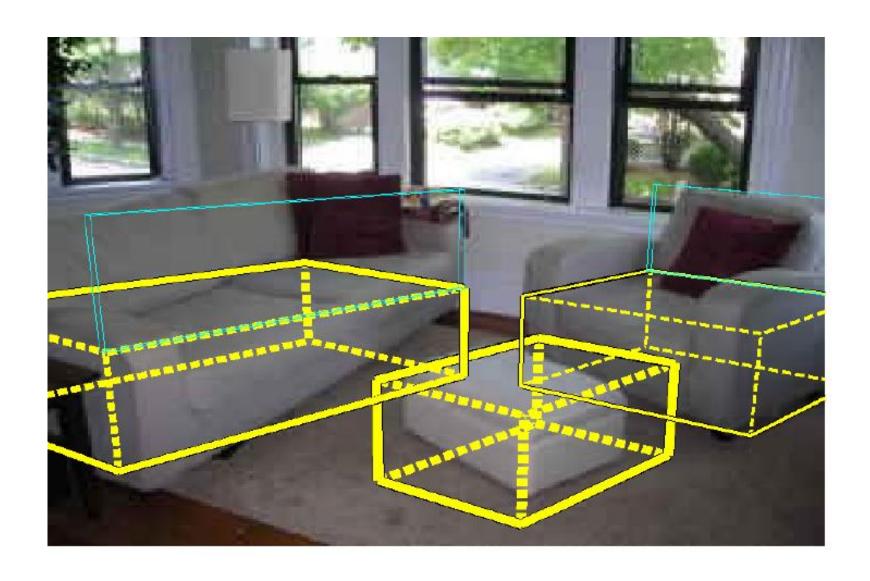
False positives

Generic boxy object detection

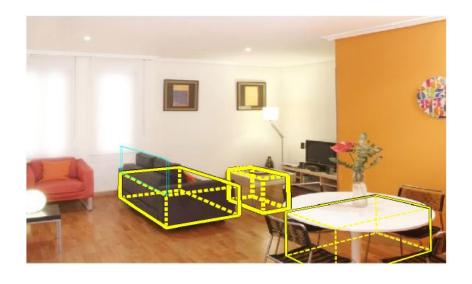
Generic boxy object detection



Generic boxy object detection



Mini-Conclusions

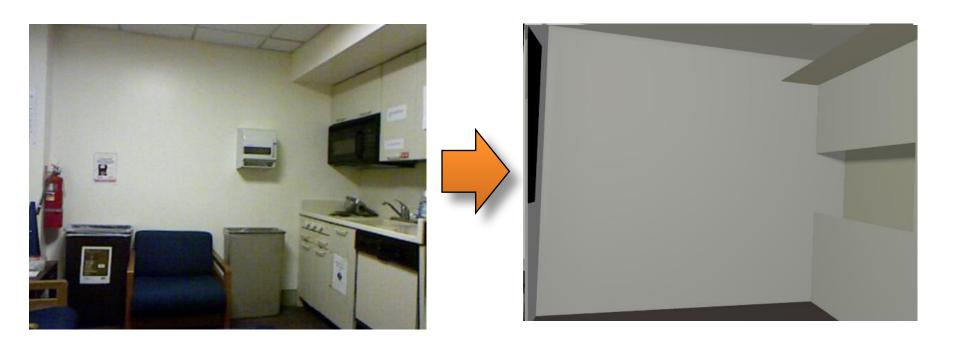


 Simple room box layout helps detect objects by predicting appearance and constraining position

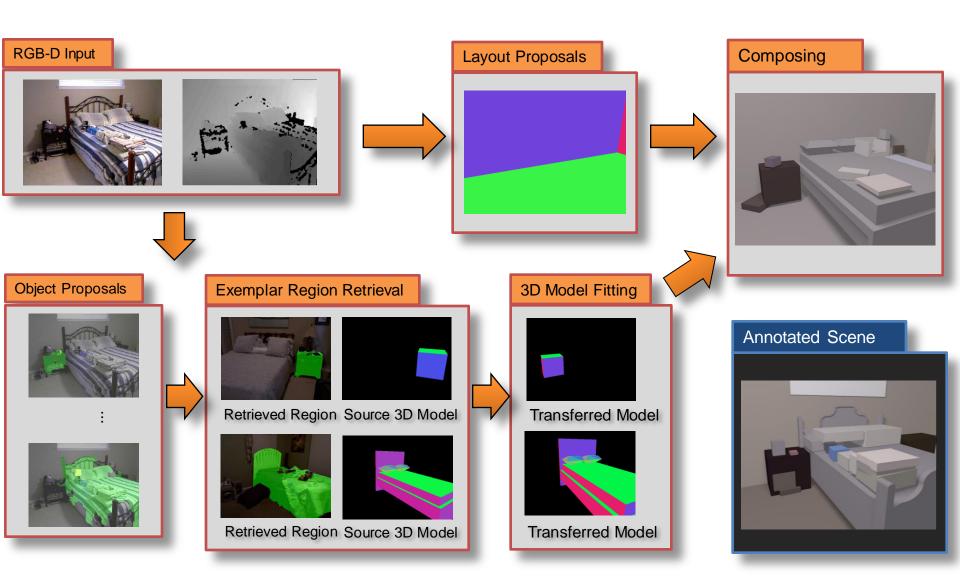
 We can search for objects in 3D space and directly evaluate on 3D localization

Predicting complete models from RGBD

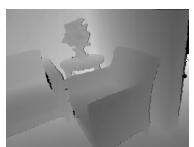
Key idea: create **complete** 3D scene hypothesis that is **consistent** with observed depth and appearance

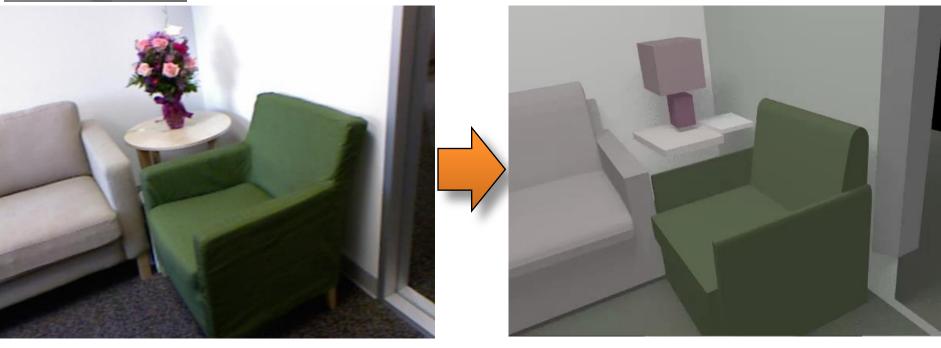


Overview of approach



Example result (fully automatic)



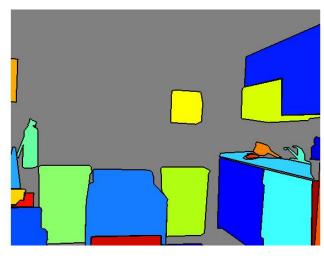


Original Image

Manual Segmentation

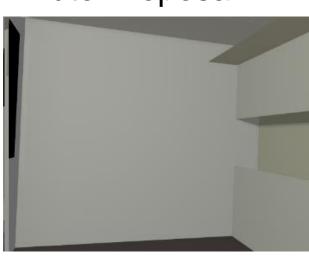
Composition with Manual Segmentation

Ground Truth Annotation



Auto Proposal

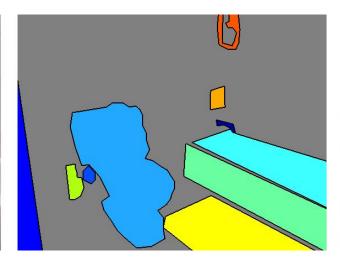
Composition with **Auto Proposal**



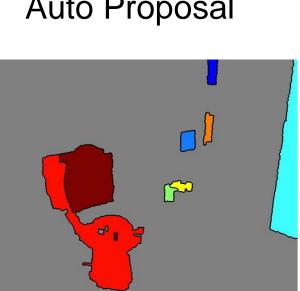
Original Image

Composition w. **Manual Segmentation**

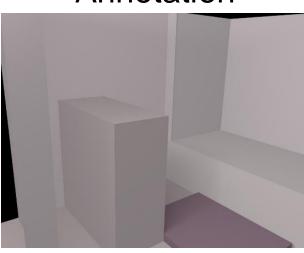
Ground Truth Annotation

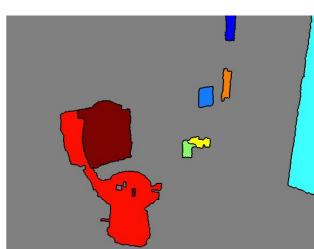


Auto Proposal



Composition w. **Auto Proposal**





Things to remember

- Objects should be interpreted in the context of the surrounding scene
 - Many types of context to consider
- Spatial layout is an important part of scene interpretation, but many open problems
 - How to represent space?
 - How to learn and infer spatial models?
 - Important to see beyond the visible
- Consider trade-off of abstraction vs. precision

Next classes

- Thursday
 - Vision and language (Tanmay to present)

- Tuesday
 - Overview of computer vision
 - Important open research problems
 - Feedback / ICES forms