04/23/15

Action Recognition

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

Last classes

• Parts-based/articulated object models

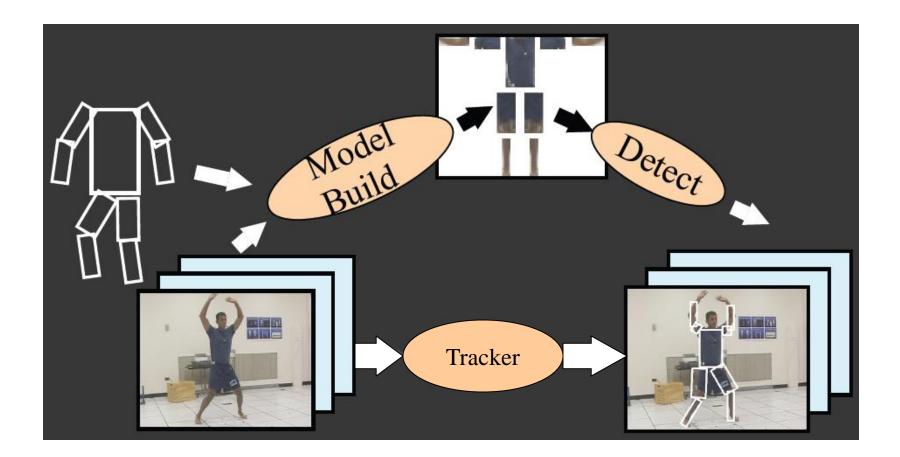
• Tracking objects

Tracking people

- Person model = appearance + structure (+ dynamics)
- Structure and dynamics are general, appearance is person-specific
- Trying to acquire an appearance model "on the fly" can lead to drift
- Instead, can use the whole sequence to initialize the appearance model and then keep it fixed while tracking
- Given strong structure and appearance models, tracking can essentially be done by repeated detection (with some smoothing)

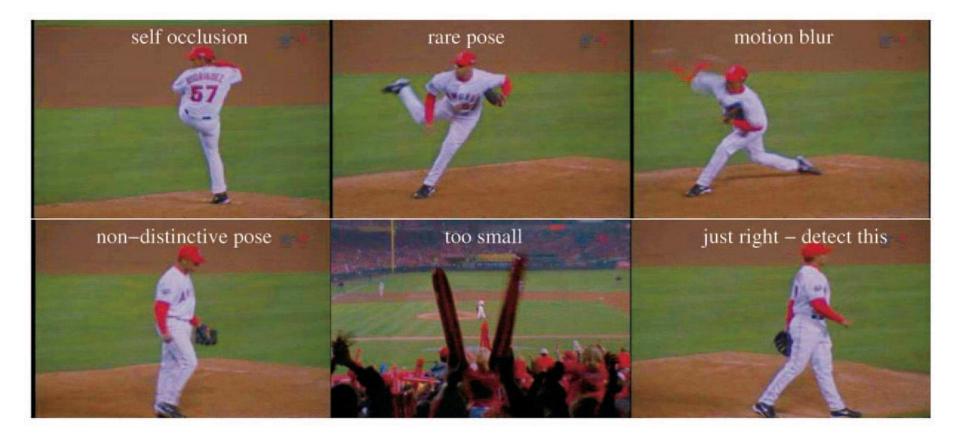
D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u> <u>Appearance</u>. PAMI 2007.

Tracking people by learning their appearance



D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u> <u>Appearance</u>. PAMI 2007.

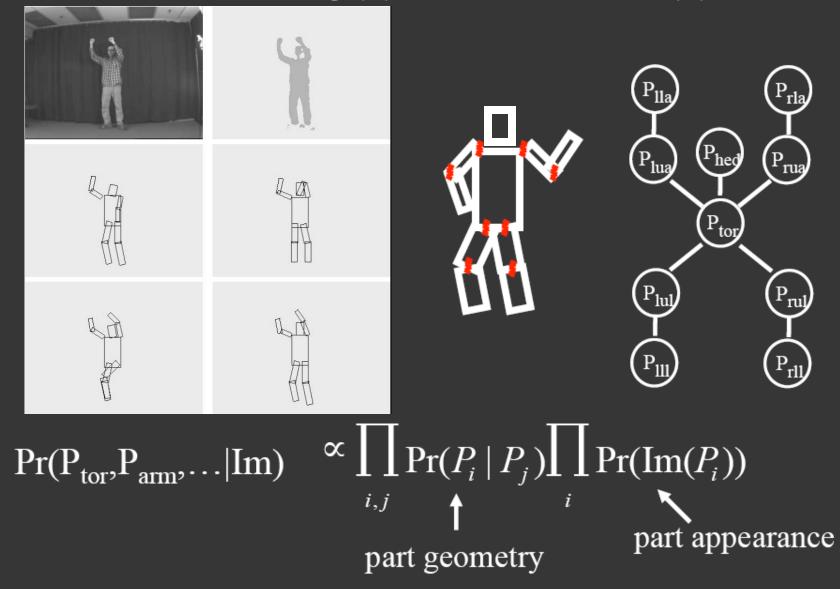
Top-down method to build model: Exploit "easy" poses



D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u> <u>Appearance</u>. PAMI 2007.

Pictorial structure model

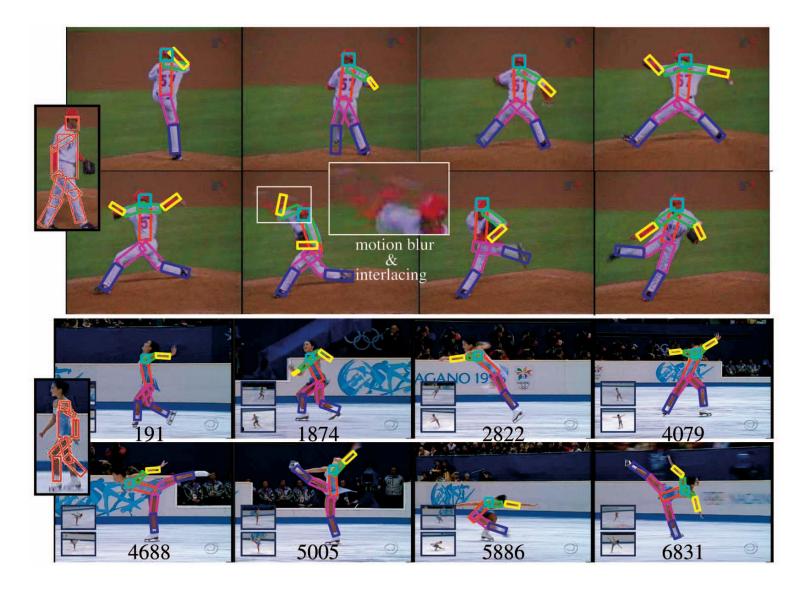
Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)



Temporal model

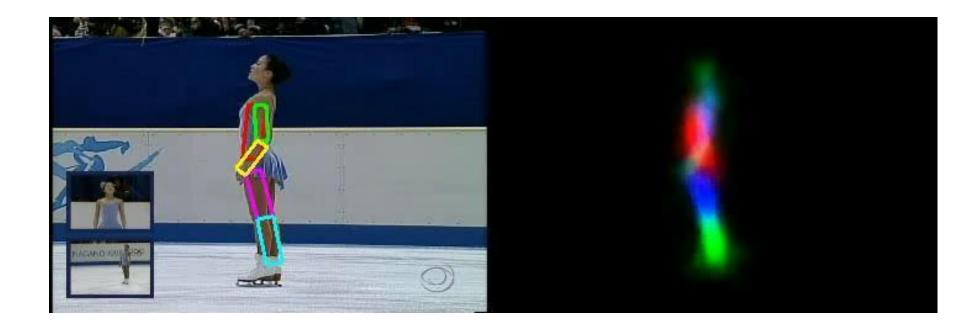
• Parts cannot move too far

Example results



http://www.ics.uci.edu/~dramanan/papers/pose/index.html

Video



http://www.ics.uci.edu/~dramanan/papers/pose/index.html

This section: advanced topics

Action recognition

3D Scenes and Context

• Convolutional neural networks in vision

What is an action?

Action: a transition from one state to another

- Who is the actor?
- How is the state of the actor changing?
- What (if anything) is being acted on?
- How is that thing changing?
- What is the purpose of the action (if any)?

How do we represent actions?

Categories

Walking, hammering, dancing, skiing, sitting down, standing up, jumping

Nouns and Predicates

<man, swings, hammer> <man, hits, nail, w/ hammer>

What is the purpose of action recognition?

• To describe

https://www.youtube.com/watch?v=bcgXAQcvxdc

• To predict

http://www.youtube.com/watch?v=LQm25nW6aZw

How can we identify actions?

Motion

Pose

Held Objects

Nearby Objects

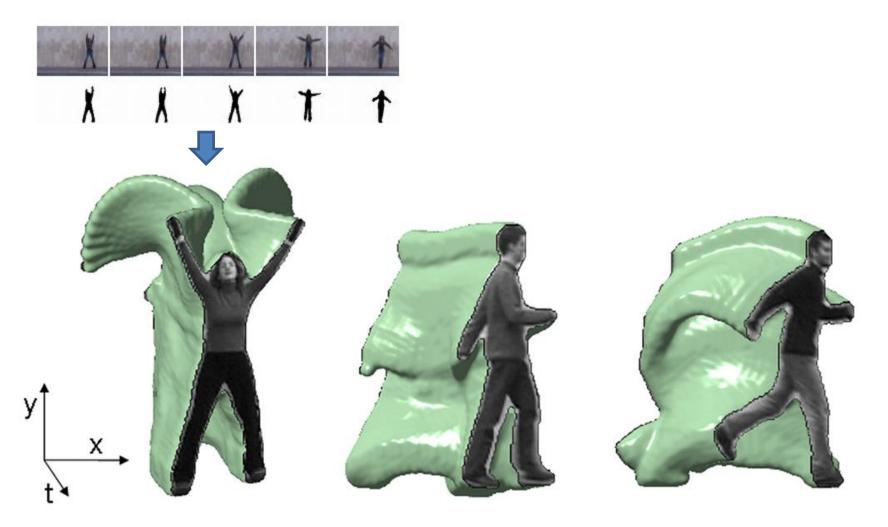
Optical Flow with Motion History

sit-down

sit-down MHI

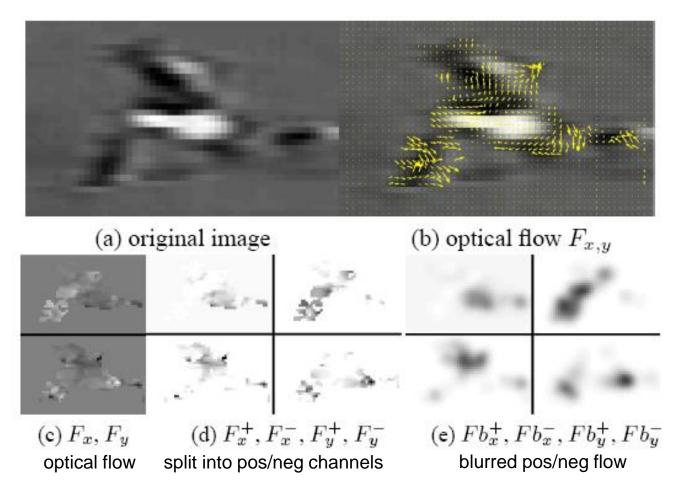
Bobick Davis 2001

Space-Time Volumes



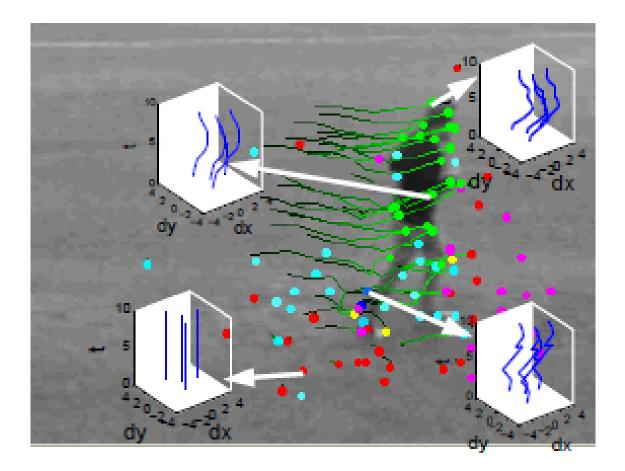
Blank et al. 2005

Optical Flow with Split Channels



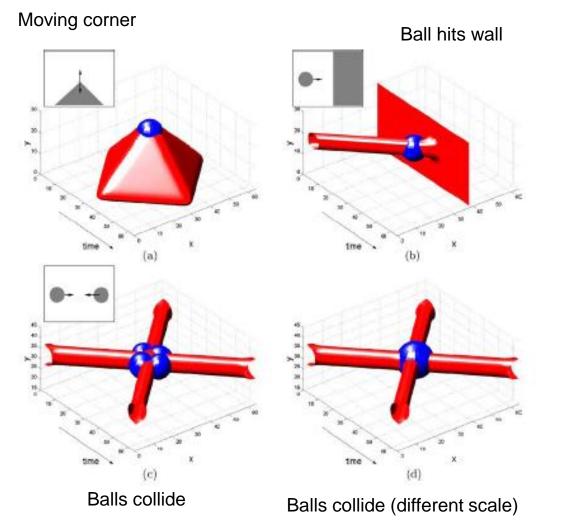
Efros et al. 2003

Tracked Points



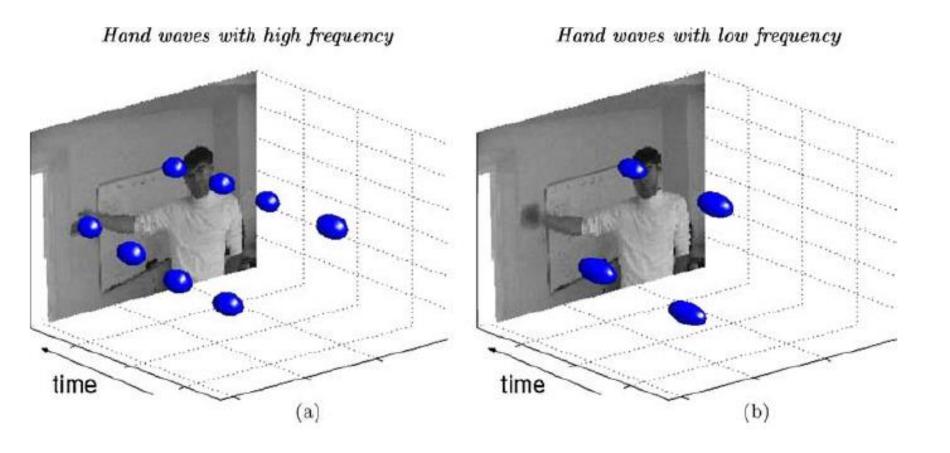
Matikainen et al. 2009

Representing Motion Space-Time Interest Points



Corner detectors in space-time

Representing Motion Space-Time Interest Points



Laptev 2005

Examples of Action Recognition Systems

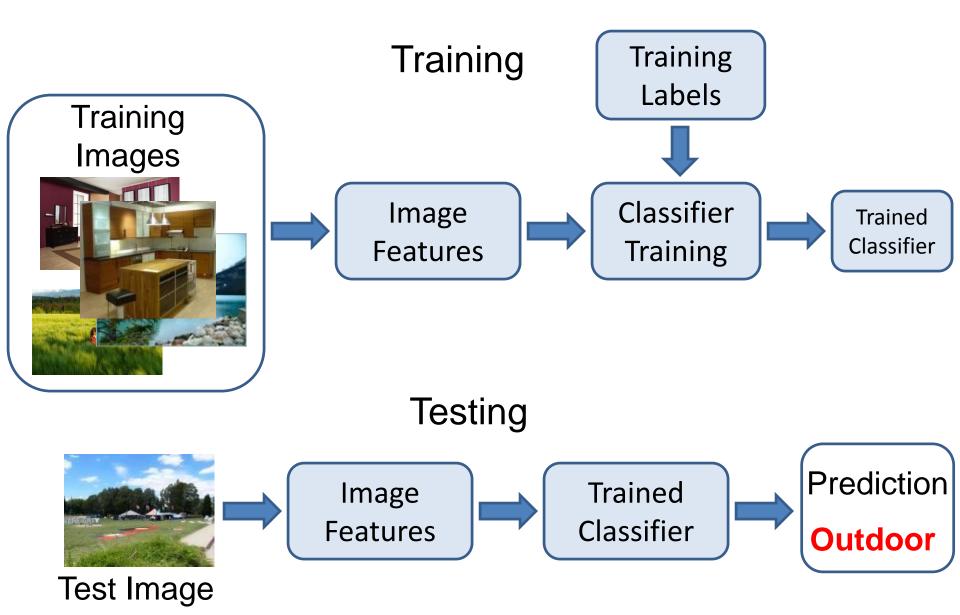
Feature-based classification

• Recognition using pose and objects

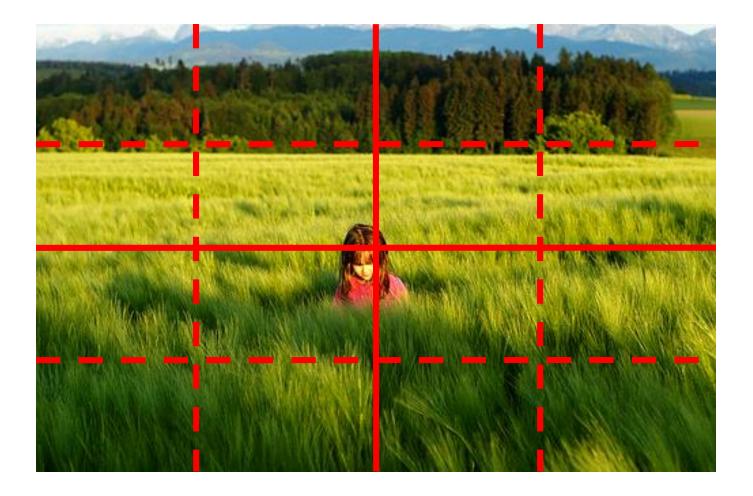
Action recognition as classification

Retrieving actions in movies, Laptev and Perez, 2007

Remember image categorization...



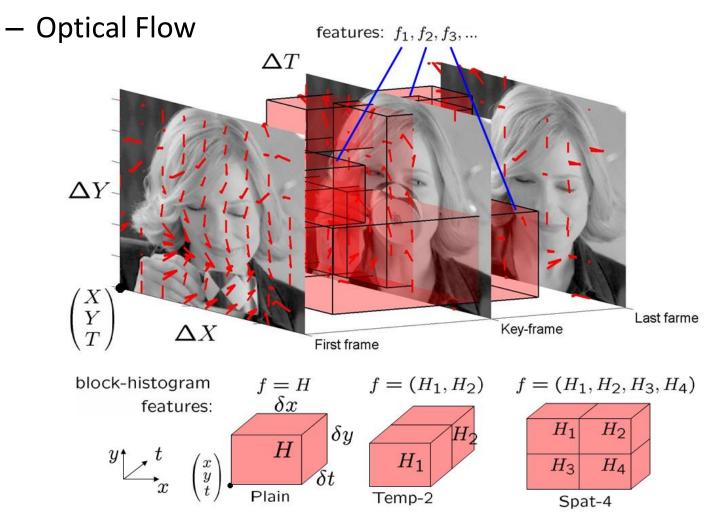
Remember spatial pyramids....



Compute histogram in each spatial bin

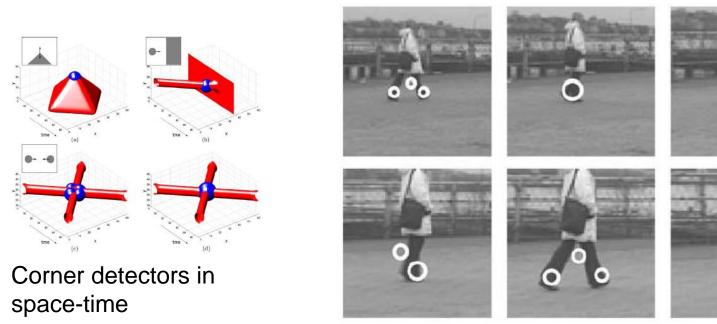
Features for Classifying Actions

- 1. Spatio-temporal pyramids
 - Image Gradients



Features for Classifying Actions

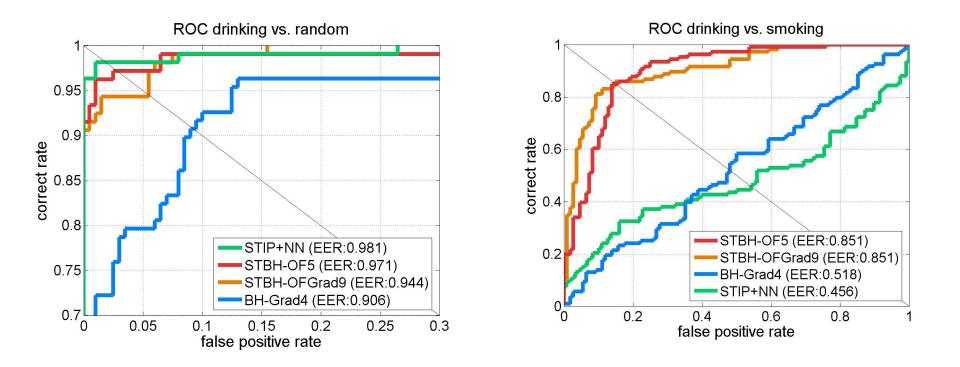
2. Spatio-temporal interest points



Descriptors based on Gaussian derivative filters over x, y, time

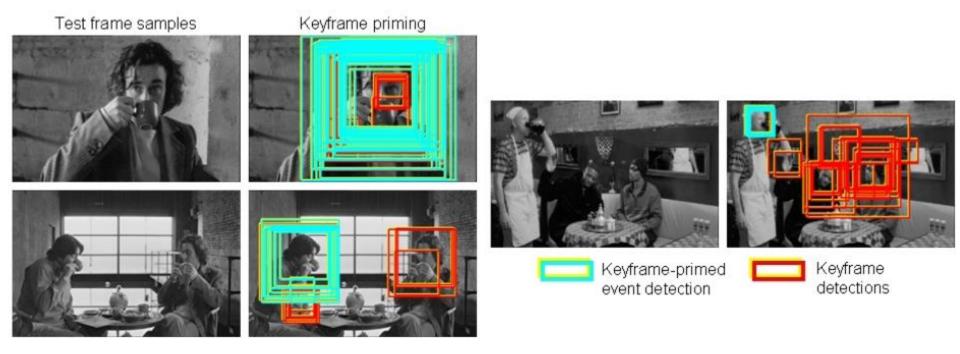
Classification

- Boosted stubs for pyramids of optical flow, gradient
- Nearest neighbor for STIP

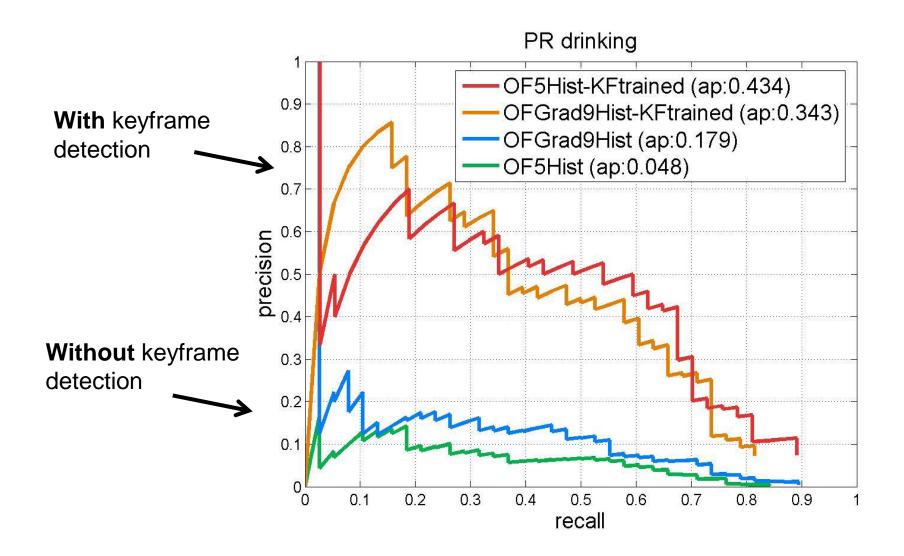


Searching the video for an action

- 1. Detect keyframes using a trained HOG detector in each frame
- Classify detected keyframes as positive (e.g., "drinking") or negative ("other")



Accuracy in searching video



"Talk on phone"

"Get out of car"

Learning realistic human actions from movies, Laptev et al. 2008

Approach

- Space-time interest point detectors
- Descriptors
 - HOG, HOF
- Pyramid histograms (3x3x2)
- SVMs with Chi-Squared Kernel

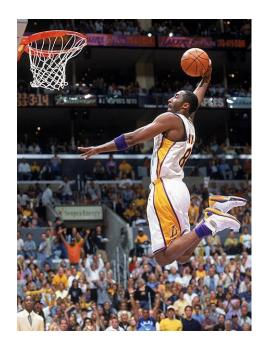
 $y \downarrow_{x}^{t}$ $i_{x1 t1}$ $i_{x1 t2}$ $i_{x1 t1}$ $i_{x1 t2}$ $i_{x1 t1}$ $i_{x1 t1}$ $i_{x2 t1}$ $i_{x1 t1}$ $i_{x1 t1}$ $i_{x1 t2}$ $i_{x1 t1}$ $i_{x1 t1}$ $i_{x1 t1}$ $i_{x1 t2}$

Interest Points

Results

Task	HoG BoF	HoF BoF	Best channel	Best combination
KTH multi-class	81.6%	89.7%	91.1% (hof h3x1 t3)	91.8% (hof 1 t2, hog 1 t3)
Action AnswerPhone	13.4%	24.6%	26.7% (hof h3x1 t3)	32.1% (hof o2x2 t1, hof h3x1 t3)
Action GetOutCar	21.9%	14.9%	22.5% (hof o2x2 1)	41.5% (hof o2x2 t1, hog h3x1 t1)
Action HandShake	18.6%	12.1%	23.7% (hog h3x1 1)	32.3% (hog h3x1 t1, hog o2x2 t3)
Action HugPerson	29.1%	17.4%	34.9% (hog h3x1 t2)	40.6% (hog 1 t2, hog o2x2 t2, hog h3x1 t2)
Action Kiss	52.0%	36.5%	52.0% (hog 1 1)	53.3% (hog 1 t1, hof 1 t1, hof o2x2 t1)
Action SitDown	29.1%	20.7%	37.8% (hog 1 t2)	38.6% (hog 1 t2, hog 1 t3)
Action SitUp	6.5%	5.7%	15.2% (hog h3x1 t2)	18.2% (hog o2x2 t1, hog o2x2 t2, hog h3x1 t2)
Action StandUp	45.4%	40.0%	45.4% (hog 1 1)	50.5% (hog 1 t1, hof 1 t2)

Action Recognition using Pose and Objects



Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities, B. Yao and Li Fei-Fei, 2010

Slide Credit: Yao/Fei-Fei

Human-Object Interaction

Holistic image based classification

Integrated reasoning

Human pose estimation

Human-Object Interaction

Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection

Human-Object Interaction

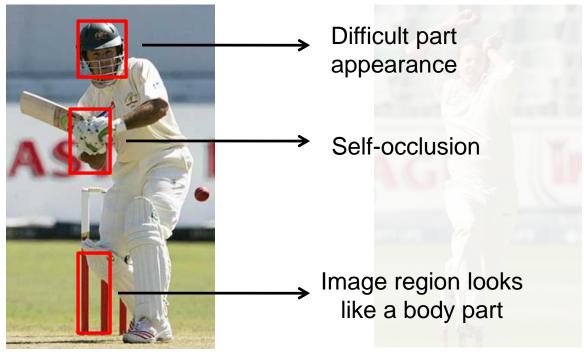
Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection
- Action categorization

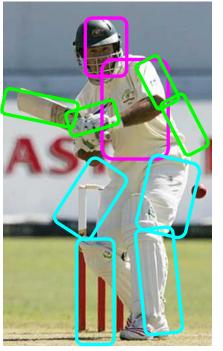
Activity: Tennis Forehand

Human pose estimation is challenging.



- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

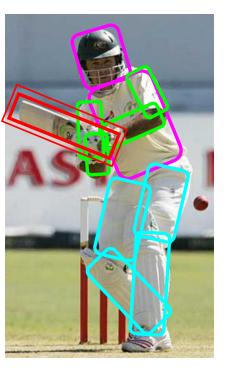
Human pose estimation is challenging.

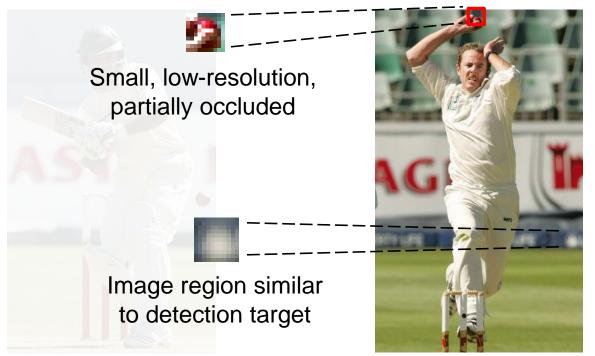


- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

Facilitate

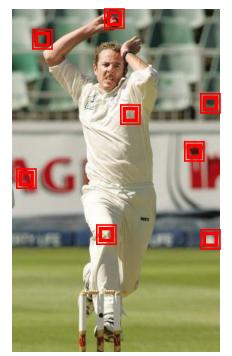
Given the object is detected.





Object detection is challenging

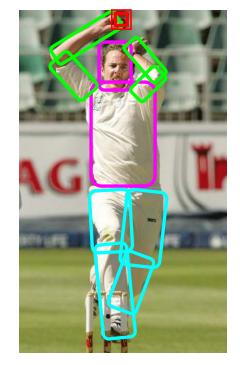
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009



Object detection is challenging

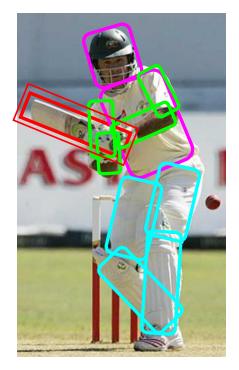
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009

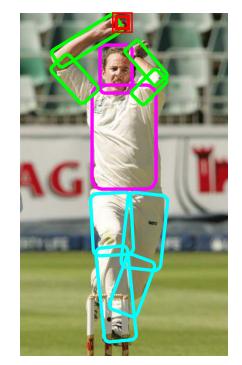
Facilitate

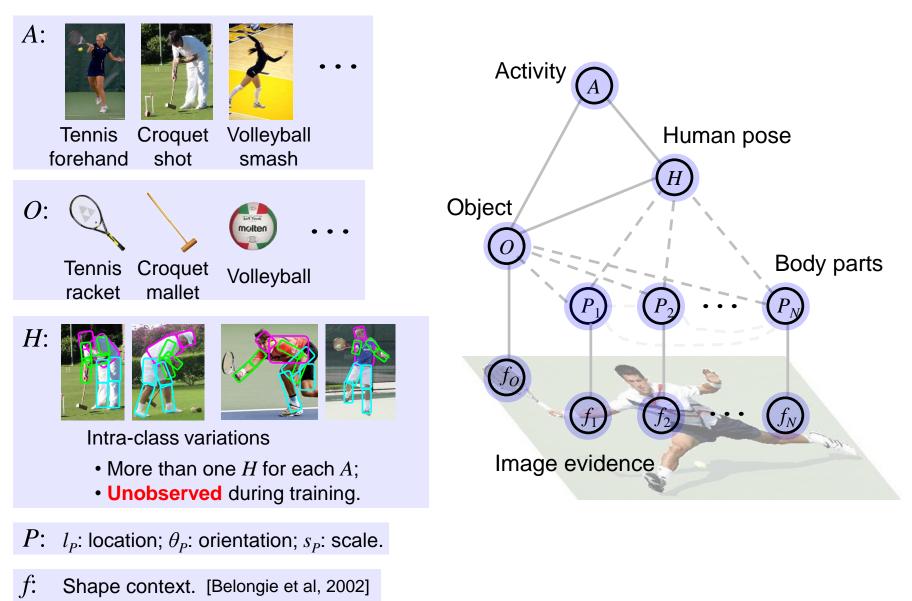


Given the pose is estimated.

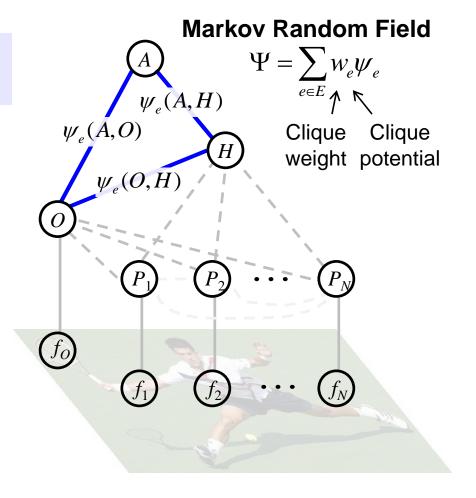
Mutual Context

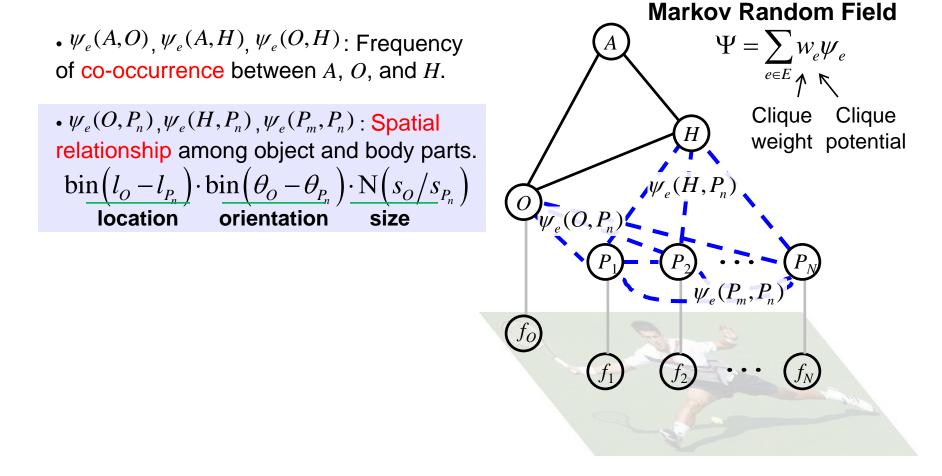






• $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between *A*, *O*, and *H*.

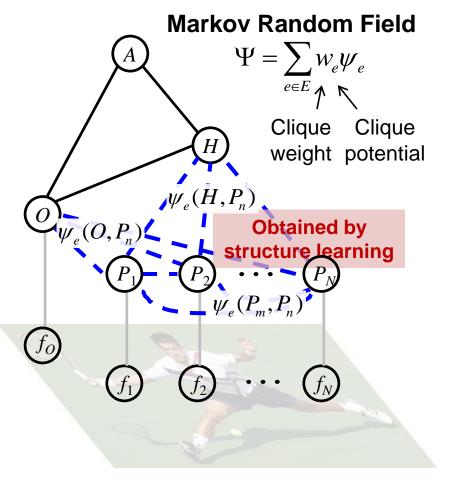




• $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between *A*, *O*, and *H*.

• $\psi_e(O, P_n), \psi_e(H, P_n), \psi_e(P_m, P_n)$: Spatial relationship among object and body parts. $bin(l_O - l_{P_n}) \cdot bin(\theta_O - \theta_{P_n}) \cdot N(s_O/s_{P_n})$ location orientation size

• Learn structural connectivity among the body parts and the object.



• $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between *A*, *O*, and *H*.

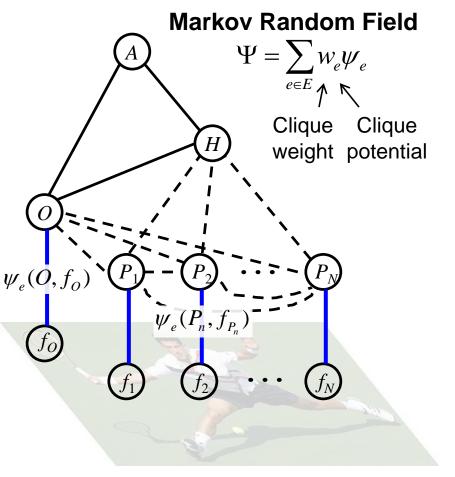
• $\psi_e(O, P_n), \psi_e(H, P_n), \psi_e(P_m, P_n)$: Spatial relationship among object and body parts. $bin(l_O - l_{P_n}) \cdot bin(\theta_O - \theta_{P_n}) \cdot N(s_O/s_{P_n})$ location orientation size

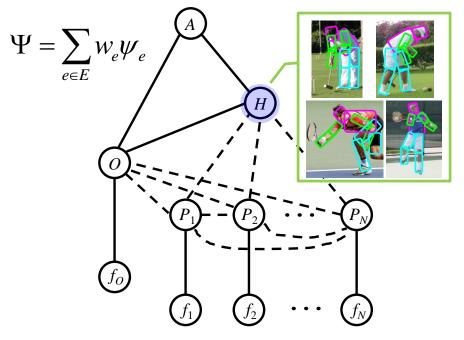
• Learn structural connectivity among the body parts and the object.

• $\Psi_e(O, f_O)$ and $\Psi_e(P_n, f_{P_n})$: Discriminative part detection scores.

Shape context + AdaBoost

[Andriluka et al, 2009] [Belongie et al, 2002] [Viola & Jones, 2001]



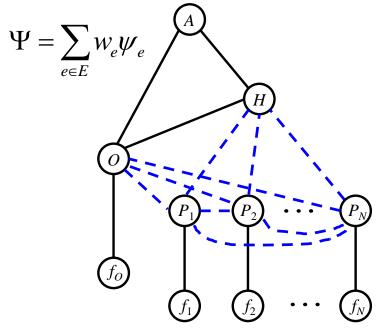


Input:

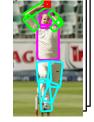
cricket shot cricket bowling

Goals:

Hidden human poses



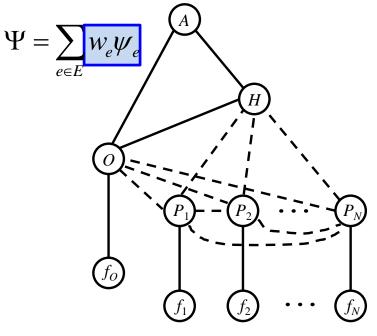
Input:



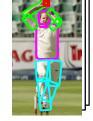
cricket shot cricket bowling

<u>Goals:</u>

Hidden human poses Structural connectivity



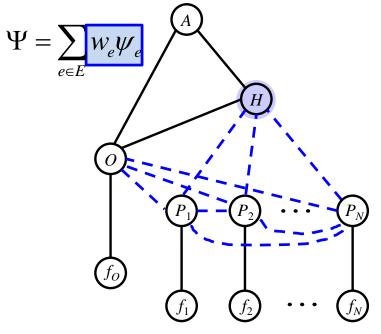
Input:



cricket shot cricket bowling

<u>Goals:</u>

Hidden human poses Structural connectivity Potential parameters Potential weights



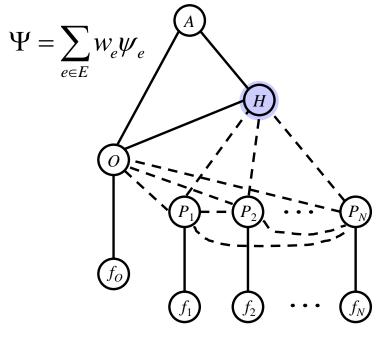
Input:

cricket shot cricket bowling

<u>Goals:</u>

- Hidden human poses \rightarrow Hidden variables
- Potential parameters
- Potential weights

- Parameter estimation

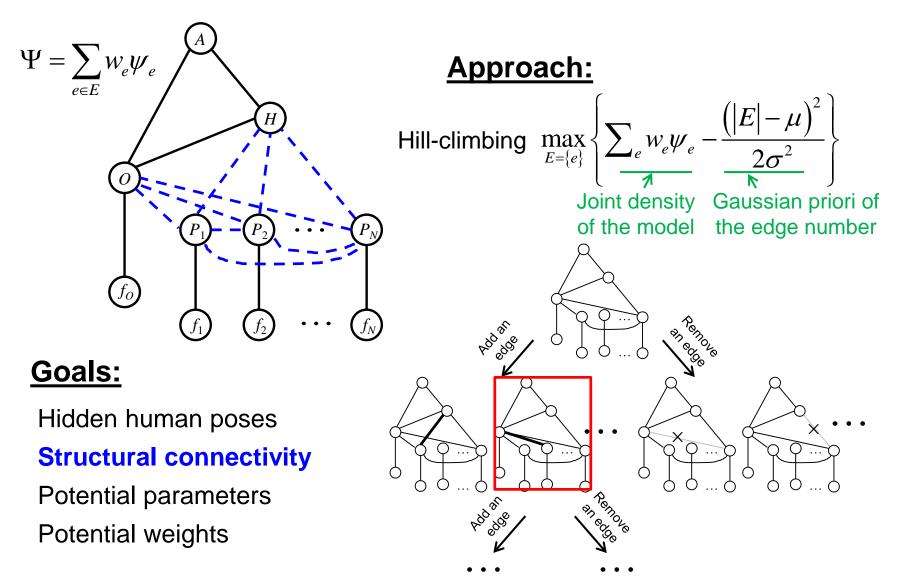


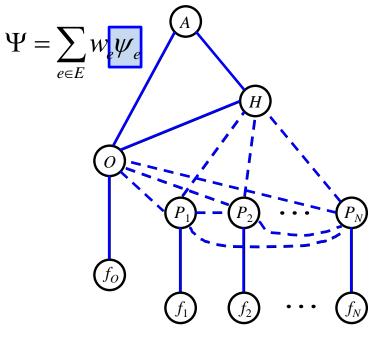
Goals:

Hidden human poses

Structural connectivity Potential parameters Potential weights

Approach:





<u>Goals:</u>

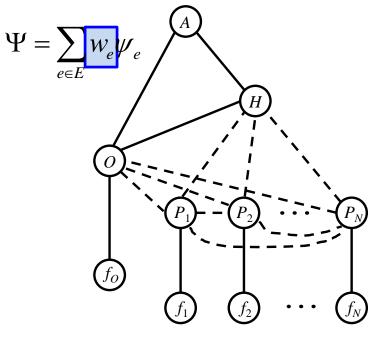
Hidden human poses Structural connectivity

Potential parameters

Potential weights

Approach:

- Maximum likelihood $\psi_e(A,O) \quad \psi_e(A,H) \quad \psi_e(O,H)$ $\psi_e(H,P_n) \quad \psi_e(O,P_n) \quad \psi_e(P_m,P_n)$
- Standard AdaBoost $\psi_e(O, f_O) \quad \psi_e(P_n, f_{P_n})$



<u>Goals:</u>

Hidden human poses Structural connectivity Potential parameters **Potential weights**

Approach:

Max-margin learning

$$\min_{\mathbf{w},\xi} \frac{1}{2} \sum_{r} \left\| \mathbf{w}_{r} \right\|_{2}^{2} + \beta \sum_{i} \xi_{i}$$

s.t. $\forall i, r \text{ where } y(r) \neq y(c_i),$ $\mathbf{w}_{c_i} \cdot \mathbf{x}_i - \mathbf{w}_r \cdot \mathbf{x}_i \geq 1 - \xi_i$ $\forall i, \xi_i \geq 0$

Notations

- \mathbf{x}_i : Potential values of the *i*-th image.
- \mathbf{w}_r : Potential weights of the *r*-th pose.
- y(r): Activity of the *r*-th pose.
- ξ_i : A slack variable for the *i*-th image.

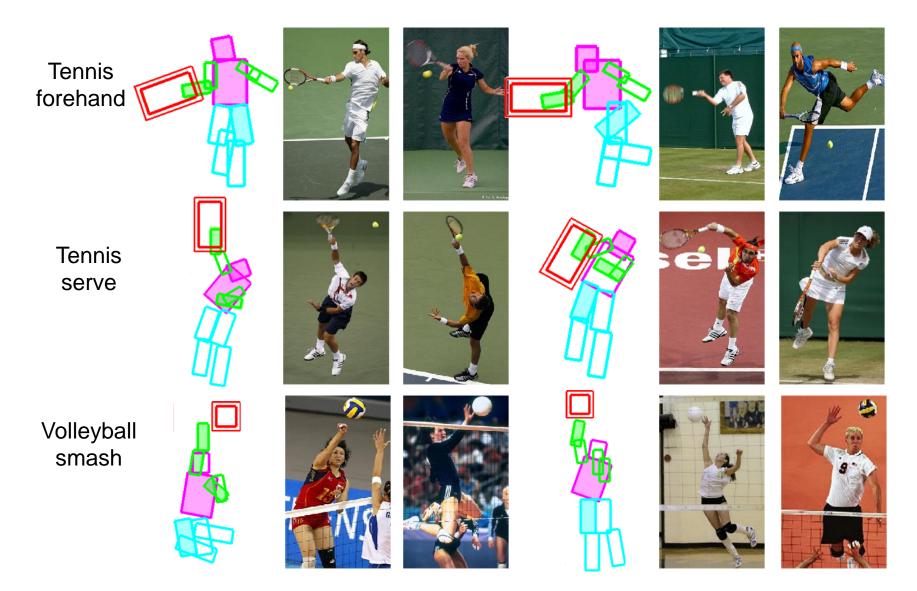
Learning Results

Cricket defensive shot

Slide Credit: Yao/Fei-Fei

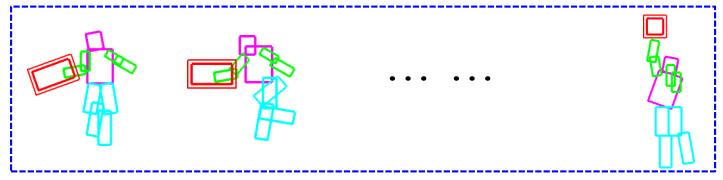
Croquet shot

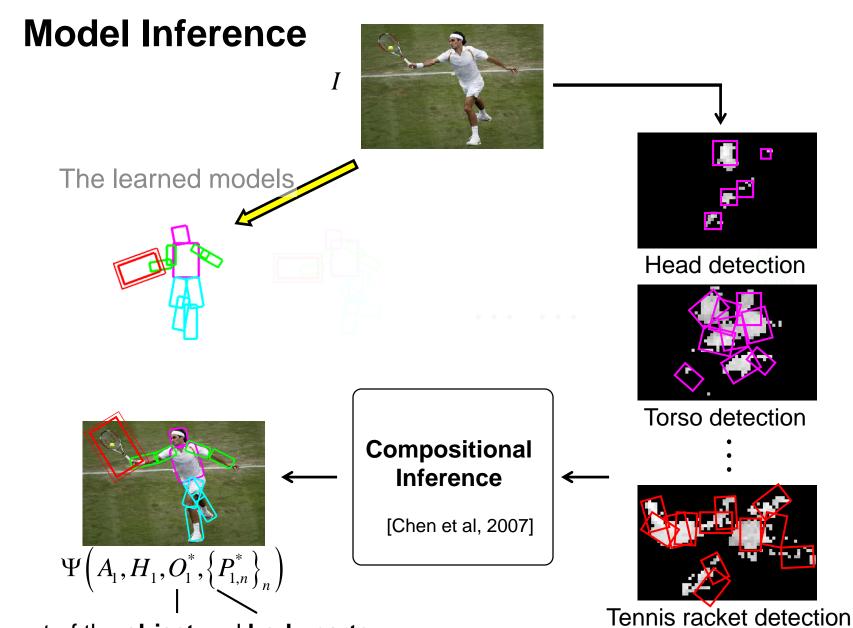
Learning Results



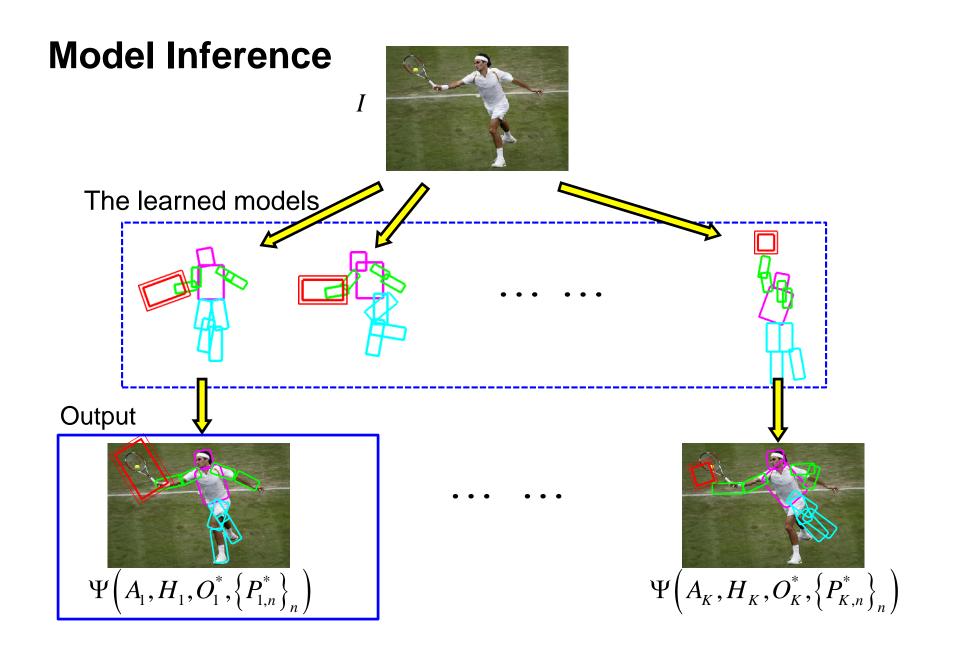
Model Inference

The learned models





Layout of the **object** and **body parts**.



Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

Tennis serve

Volleyball

smash

[Gupta et al, 2009]

Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

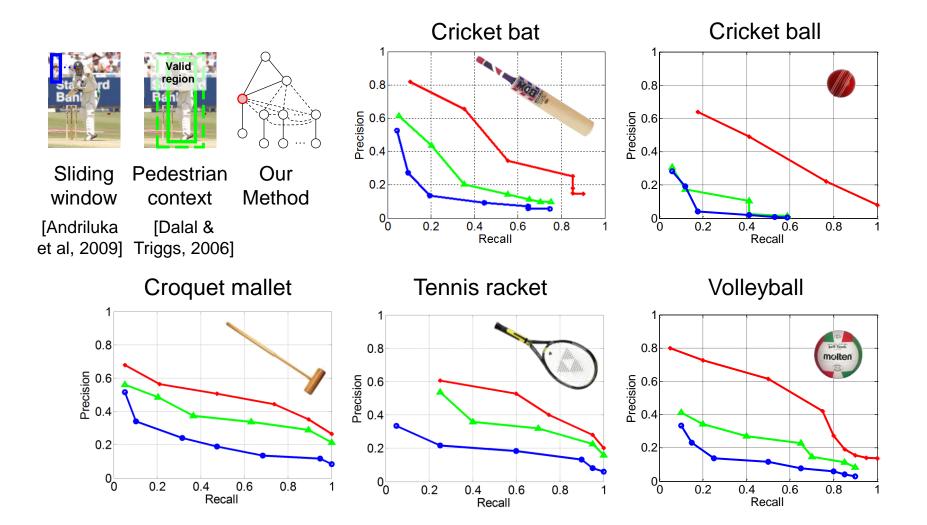
Tennis forehand

[Gupta et al, 2009]

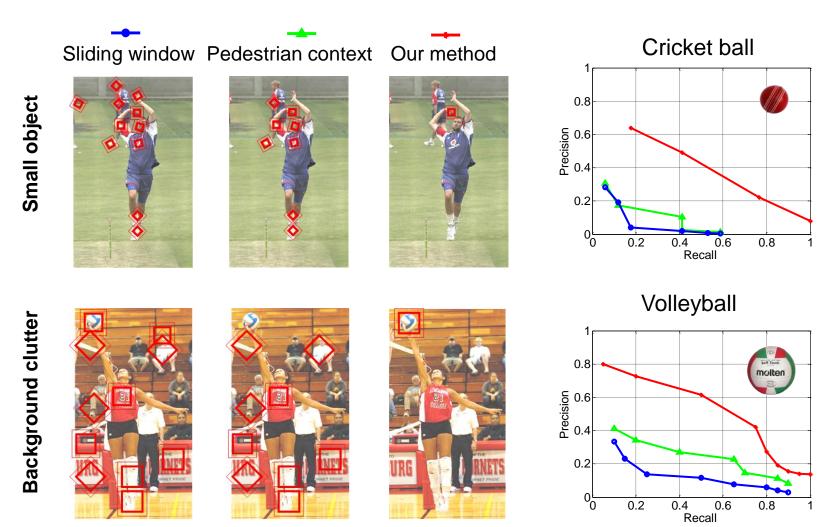
Tennis serve

Volleyball smash

Object Detection Results



Object Detection Results



Dataset and Experiment Setup

Sport data set: 6 classes 180 training & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

[Gupta et al, 2009]

Tennis serve

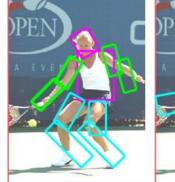
Volleyball smash

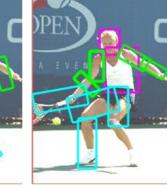
Human Pose Estimation Results

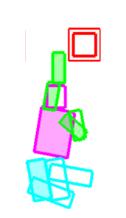
Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58

Human Pose Estimation Results

Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58







Tennis serve model

Our estimation result

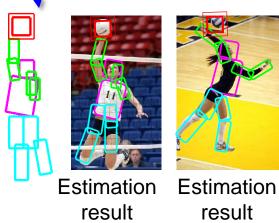
Andriluka et al, 2009

Volleyball smash model

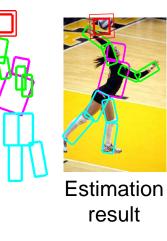
Our estimation Andriluka result et al, 2009

Human Pose Estimation Results

Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58
One pose per class	.63	.40	.36	.41	.31	.38	.35	.21	.23	.52



Estimation result



Dataset and Experiment Setup

Sport data set: 6 classes 180 training & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

Tennis serve

Volleyball smash

Slide Credit: Yao/Fei-Fei

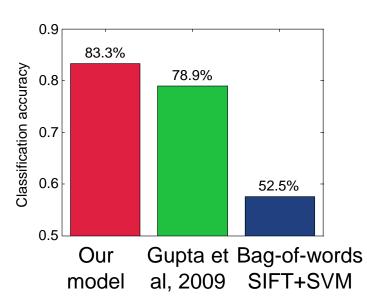
[Gupta et al, 2009]

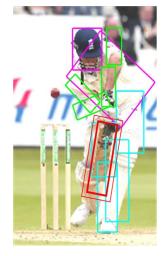
Activity Classification Results

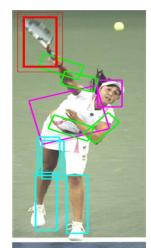
Cricket

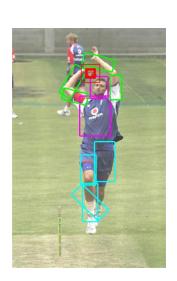
shot

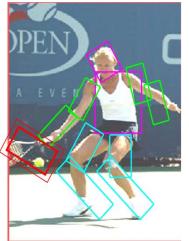
Tennis forehand











Take-home messages

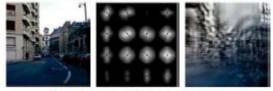
- Action recognition is an open problem.
 - How to define actions?
 - How to infer them?
 - What are good visual cues?
 - How do we incorporate higher level reasoning?

Take-home messages

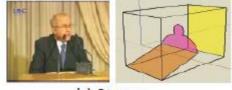
- Some work done, but it is just the beginning of exploring the problem. So far...
 - Actions are mainly categorical (could be framed in terms of effect or intent)
 - Most approaches are classification using simple features (spatial-temporal histograms of gradients or flow, s-t interest points, SIFT in images)
 - Just a couple works on how to incorporate pose and objects
 - Not much idea of how to reason about long-term activities or to describe video sequences

Next class: 3D Scenes and Context

Scene-Level Geometric Description



a) Gist, Spatial Envelope



b) Stages

Retinotopic Maps

c) Geometric Context

d) Depth Maps

Highly Structured 3D Models

e) Ground Plane

f) Ground Plane with Billboards

g) Ground Plane with Walls

h) Blocks World

i) 3D Box Model