Object Category Detection: Parts-based Models

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem
Goal: Detect all instances of objects

Cars

Faces

Cats
Last class: sliding window detection
Object model: last class

- Statistical Template in Bounding Box
 - Object is some \((x,y,w,h)\) in image
 - Features defined \(\text{wrt} \) bounding box coordinates
Last class: statistical template

• Object model = log linear model of parts at fixed positions

\[+3 +2 -2 -1 -2.5 = -0.5 > 7.5 \]

Non-object

\[+4 +1 +0.5 +3 +0.5 = 10.5 > 7.5 \]

Object
When do statistical templates make sense?

Caltech 101 Average Object Images
Object models: this class

• Articulated parts model
 – Object is configuration of parts
 – Each part is detectable

Images from Felzenszwalb
Deformable objects

Images from Caltech-256
Deformable objects

Images from D. Ramanan’s dataset

Slide Credit: Duan Tran
Compositional objects
Parts-based Models

Define object by collection of parts modeled by

1. Appearance
2. Spatial configuration

Slide credit: Rob Fergus
How to model spatial relations?

• One extreme: fixed template
How to model spatial relations?

- Another extreme: bag of words
How to model spatial relations?

• Star-shaped model
How to model spatial relations?

- Star-shaped model

![Diagram of star-shaped models](image)
How to model spatial relations?

• Tree-shaped model
How to model spatial relations?

- Many others...

1. **Constellation**
 - O(N^6)
 - Fergus et al. '03
 - Fei-Fei et al. '03

2. **Star shape**
 - O(N^2)
 - Leibe et al. '04, '08
 - Crandall et al. '05
 - Fergus et al. '05

3. **k-fan (k = 2)**
 - O(N^3)
 - Crandall et al. '05

4. **Tree**
 - O(N^2)
 - Felzenszwalb & Huttenlocher '05

5. **Bag of features**
 - O(N)
 - Csurka '04
 - Vasconcelos '00

6. **Hierarchy**
 - Bouchard & Triggs '05

7. **Sparse flexible model**
 - Carneiro & Lowe '06

From [Carneiro & Lowe, ECCV'06]
Today’s class

1. Star-shaped model
 – Example: Deformable Parts Model
 • Felzenswalb et al. 2010

2. Tree-shaped model
 – Example: Pictorial structures
 • Felzenszwalb Huttenlocher 2005

3. Sequential prediction models
Deformable Latent Parts Model (DPM)

Detections

Template Visualization

Felzenszwalb et al. 2008, 2010
Review: Dalal-Triggs detector

1. Extract fixed-sized (64x128 pixel) window at each position and scale
2. Compute HOG (histogram of gradient) features within each window
3. Score the window with a linear SVM classifier
4. Perform non-maxima suppression to remove overlapping detections with lower scores
Deformable parts model

- Root filter models coarse whole-object appearance
- Part filters model finer-scale appearance of smaller patches
- For each root window, part positions that maximize appearance score minus spatial cost are found
- Total score is sum of scores of each filter and spatial costs
DPM: computing object score

With generalized distance transform, compute the maximum part score corresponding to each root position.
DPM: mixture model

• Each positive example is modeled by one of M detectors

• In testing, all detectors are applied with non-max suppression
DPM: Training

1. \(F_n := \emptyset \)
2. for relabel := 1 to num-relabel do
3. \(F_p := \emptyset \)
4. for \(i := 1 \) to \(n \) do
5. Add detect-best \((\beta, I_i, B_i)\) to \(F_p \)
6. end
7. for datamine := 1 to num-datamine do
8. for \(j := 1 \) to \(m \) do
9. if \(|F_n| \geq \text{memory-limit}\) then break
10. Add detect-all \((\beta, J_j, -(1+\delta))\) to \(F_n \)
11. end
12. \(\beta := \text{gradient-descent} (F_p \cup F_n) \)
13. Remove \((i, v)\) with \(\beta \cdot v < -(1+\delta) \) from \(F_n \)
14. end
15. end

Procedure Train

Solve for latent parameters (root/part positions, mixture component) that maximize score and are consistent with ground truth bounding box.

Add negative examples that achieve some minimum score (\(> 1 - \delta \)).

Solve for SVM weights given current latent parameters and negative examples.
Results
Improvement over time for HOG-based detectors

AP on PASCAL VOC 2007

- Dalal-Triggs (1 component, no parts)
- DPM v1 (1 component, parts)
- DPM v2 (2 component, context)
- DPM v3
- DPM v4 (3 component, left/right flip)
- DPM v5

Graph shows the improvement in AP on PASCAL VOC 2007 from 2005 to 2012.
Tree-shaped model
Pictorial Structures Model

Part = oriented rectangle

Spatial model = relative size/orientation

Felzenszwalb and Huttenlocher 2005
Pictorial Structures Model

\[P(L|I, \theta) \propto \left(\prod_{i=1}^{n} p(I|l_i, u_i) \prod_{(v_i, v_j) \in E} p(l_i, l_j|c_{ij}) \right) \]

Appearance likelihood

Geometry likelihood
Modeling the Appearance

• Any appearance model could be used
 – HOG Templates, etc.
 – Here: rectangles fit to background subtracted binary map

• Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

\[
P(L|I, \theta) \propto \left(\prod_{i=1}^{n} p(I|l_i, u_i) \prod_{(v_i, v_j) \in E} p(l_i, l_j|c_{ij}) \right)
\]

Appearance likelihood

Geometry likelihood
Part representation

- Background subtraction
Pictorial structures model

Optimization is tricky but can be efficient

\[L^* = \arg \min_L \left(\sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i,v_j) \in E} d_{ij}(l_i, l_j) \right) \]

- For each \(l_1 \), find best \(l_2 \):
 \[\text{Best}_2(l_1) = \min_{l_2} \left[m_2(l_2) + d_{12}(l_1, l_2) \right] \]
- Remove \(v_2 \), and repeat with smaller tree, until only a single part
- For \(k \) parts, \(n \) locations per part, this has complexity of \(O(kn^2) \), but can be solved in \(\sim O(kn) \) using generalized distance transform
Distance Transform

• For each pixel p, how far away is the nearest pixel q of set G?

 $f(p) = \min_{q \in G} d(p, q)$

• G is often the set of edge pixels.
Distance Transform - Applications

- Set distances – e.g. Hausdorff Distance
- Image processing – e.g. Blurring
- Robotics – Motion Planning
- Alignment
 - Edge images
 - Motion tracks
 - Audio warping
- Deformable Part Models
Generalized Distance Transform

• Original form: \[f(p) = \min_{q \in G} \ d(p, q) \]
• General form: \[f(p) = \min_{q \in [1, N]} \ m(q) + d(p, q) \]

• For many deformation costs, \(O(N^2) \rightarrow O(N) \)

 - Quadratic \(d(p, q) = \alpha (p - q)^2 + \beta (p - q) \)
 - Abs Diff \(d(p, q) = \alpha |p - q| \)
 - Min Composition \(d(p, q) = \min(d_1(p, q), d_2(p, q)) \)
 - Bounded \(d_\tau(p, q) = \begin{cases} d(p, q) & : |p - q| < \tau \\ \infty & : |p - q| \geq \tau \end{cases} \)
Results for person matching
Results for person matching
Enhanced pictorial structures

- Learn spatial prior
- Color models from soft segmentation (initialized by location priors of each part)
2 minute break

Which patch corresponds to a body part?
Which patch corresponds to a body part?

Example from Ramakrishna
Sequential structured prediction

- Can consider pose estimation as predicting a set of related variables (called structured prediction)
 - Some parts easy to find (head), some are hard (wrists)

- One solution: jointly solve for most likely variables (DPM, pictorial structures)

- Another solution: iteratively predict each variable based in part on previous predictions
Pose machines

Local image evidence is weak
Certain parts are easier to detect than others

Ramakrishna et al. ECCV 2014
Example results
General principle

• “Auto-context” (Tu CVPR 2008): instead of fancy graphical models, create feature from past predictions and repredict

• Can view this as an “unrolled belief propagation” (Ross et al. 2011)
Many uses and variations on sequential structured prediction

Closing the Loop

Scene Analysis Processes
- Surface Orientation
- Object/Viewpoint
- Occlusion/Depth

Input Image

Intrinsic Images

Hoiem Efros Hebert 2008

Autocontext

Many uses and variations on sequential structured prediction

Cascaded Classification Model

Prediction Task 1
- Task 1: Image Features
- Task 1: Initial Predictions
- Task 1: Final Predictions

Prediction Task N
- Task N: Image Features
- Task N: Initial Predictions
- Task N: Final Predictions

Heitz Gould Saxena Koller 2008
Li Kowdle Saxena Chen 2010
Learning to search for landmarks

- Learn to find easy landmarks (body joints) first and use them as context for harder ones.

Singh et al. CVPR 2015
Results: best (top) to worst (bottom)
Graphical models vs. structured prediction

• Advantages of sequential prediction
 – Simple procedures for training and inference
 – Learns how much to rely on each prediction
 – Can model very complex relations

• Advantages of BP/graphcut/etc
 – Elegant
 – Relations are explicitly modeled
 – Exact inference in some cases
Things to remember

• Models can be broken down into part appearance and spatial configuration
 – Wide variety of models

• Efficient optimization can be tricky but usually possible
 – Generalized distance transform is a useful trick

• Rather than explicitly modeling contextual relations, can encode through features/classifiers
Next classes

• HW 5 due Monday (last one!!)

• Tues: Object tracking with Kalman Filters

• Thurs: Action Recognition