Classifiers

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Today's class

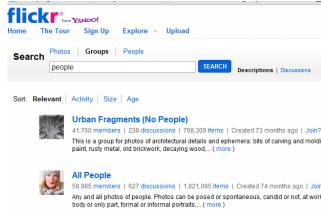
Review of image categorization

- Classification
 - A few examples of classifiers: nearest neighbor, generative classifiers, logistic regression, SVM
 - Important concepts in machine learning
 - Practical tips

What is a category?

Why would we want to put an image in one?
 To predict, describe, interact. To organize.

Many different ways to categorize



Examples of Categorization in Vision

- Part or object detection
 - E.g., for each window: face or non-face?
- Scene categorization
 - Indoor vs. outdoor, urban, forest, kitchen, etc.
- Action recognition
 - Picking up vs. sitting down vs. standing ...
- Emotion recognition
- Region classification
 - Label pixels into different object/surface categories
- Boundary classification
 - Boundary vs. non-boundary
- Etc, etc.

Image Categorization

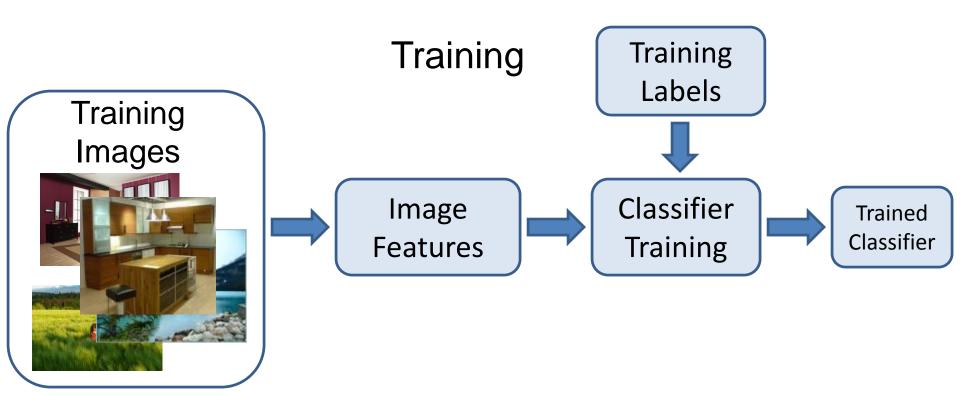
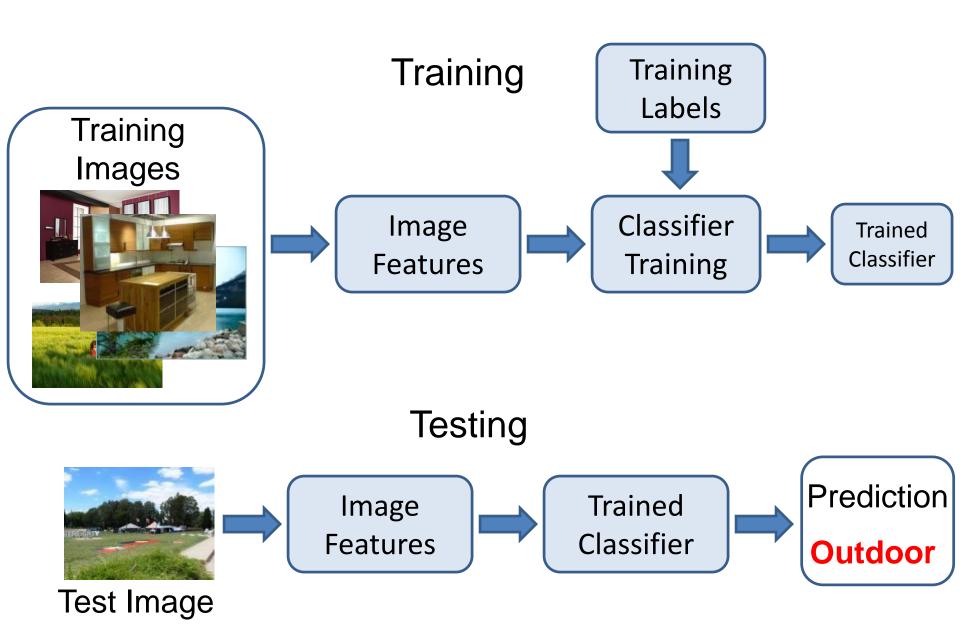


Image Categorization



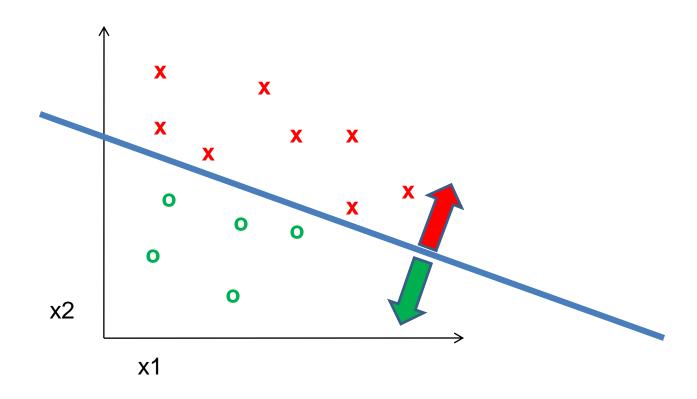
Feature design is paramount

 Most features can be thought of as templates, histograms (counts), or combinations

- Think about the right features for the problem
 - Coverage
 - Concision
 - Directness

Classifier

A classifier maps from the feature space to a label



Different types of classification

- Exemplar-based: transfer category labels from examples with most similar features
 - What similarity function? What parameters?
- Linear classifier: confidence in positive label is a weighted sum of features
 - What are the weights?
- Non-linear classifier: predictions based on more complex function of features
 - What form does the classifier take? Parameters?
- Generative classifier: assign to the label that best explains the features (makes features most likely)
 - What is the probability function and its parameters?

Note: You can always fully design the classifier by hand, but usually this is too difficult. Typical solution: learn from training examples.

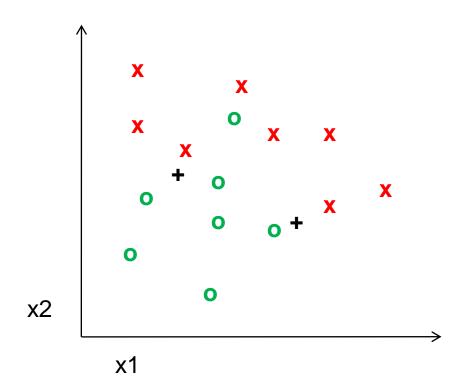
One way to think about it...

- Training labels dictate that two examples are the same or different, in some sense
- Features and distance measures define visual similarity
- Goal of training is to learn feature weights or distance measures so that visual similarity predicts label similarity
- We want the simplest function that is confidently correct

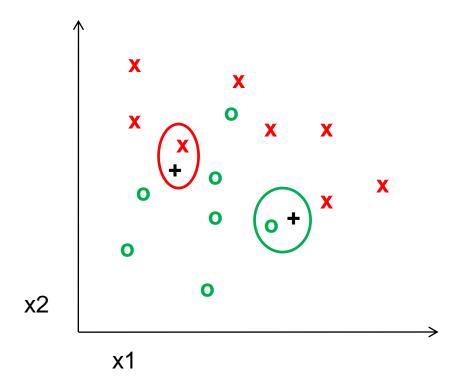
Exemplar-based Models

 Transfer the label(s) of the most similar training examples

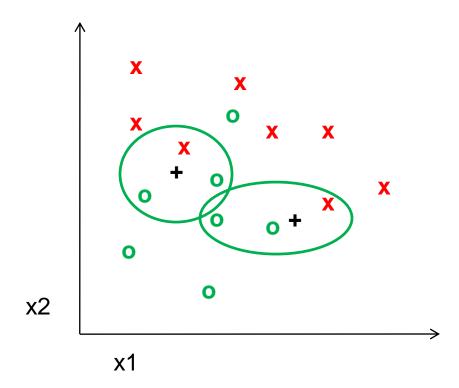
K-nearest neighbor classifier



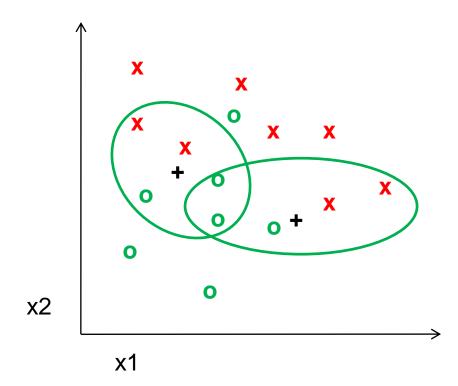
1-nearest neighbor



3-nearest neighbor



5-nearest neighbor



Using K-NN

- Simple, a good one to try first
- Higher K gives smoother functions
- No training time (unless you want to learn a distance function)
- With infinite examples, 1-NN provably has error that is at most twice Bayes optimal error

Discriminative classifiers

Learn a simple function of the input features that confidently predicts the true labels on the training set

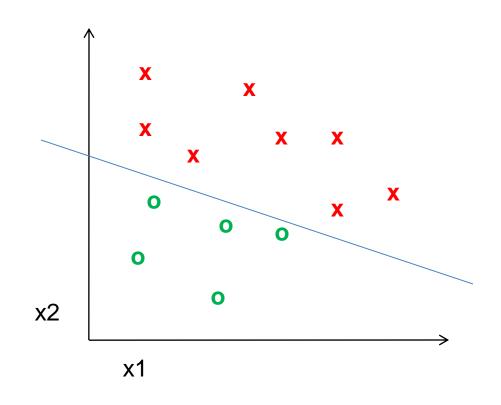
$$y = f(x)$$

Training Goals

- 1. Accurate classification of training data
- 2. Correct classifications are confident
- 3. Classification function is simple

Classifiers: Logistic Regression

- Objective
- Parameterization
- Regularization
- Training
- Inference



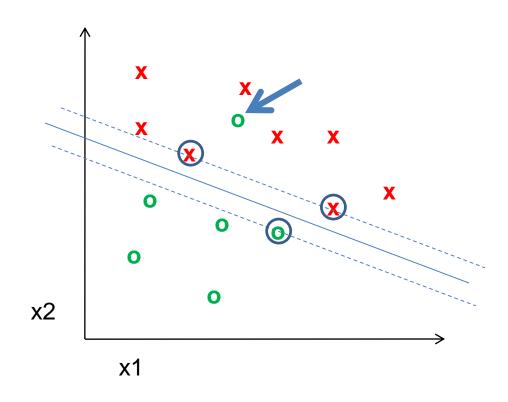
The **objective function** of most discriminative classifiers includes a **loss term** and a **regularization term**.

Using Logistic Regression

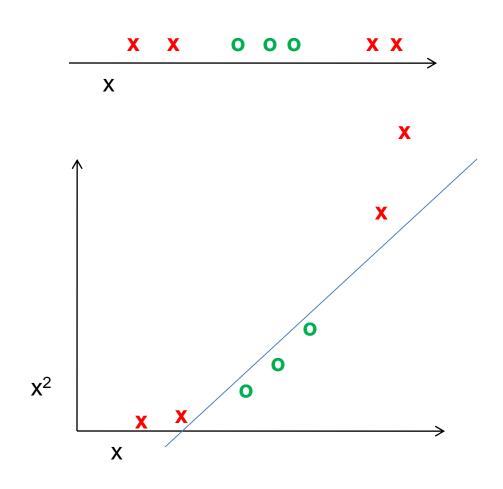
Quick, simple classifier (good one to try first)

- Use L2 or L1 regularization
 - L1 does feature selection and is robust to irrelevant features but slower to train

Classifiers: Linear SVM



Classifiers: Kernelized SVM



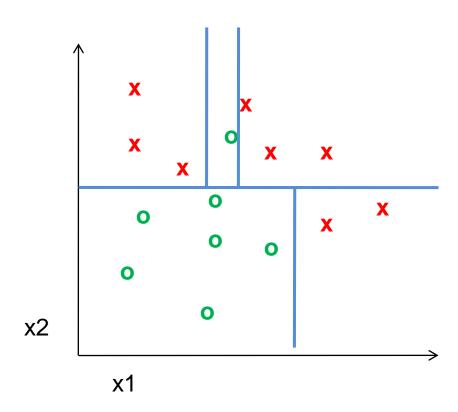
Using SVMs

- Good general purpose classifier
 - Generalization depends on margin, so works well with many weak features
 - No feature selection
 - Usually requires some parameter tuning

Choosing kernel

- Linear: fast training/testing start here
- RBF: related to neural networks, nearest neighbor
- Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
- Can learn a kernel function

Classifiers: Decision Trees

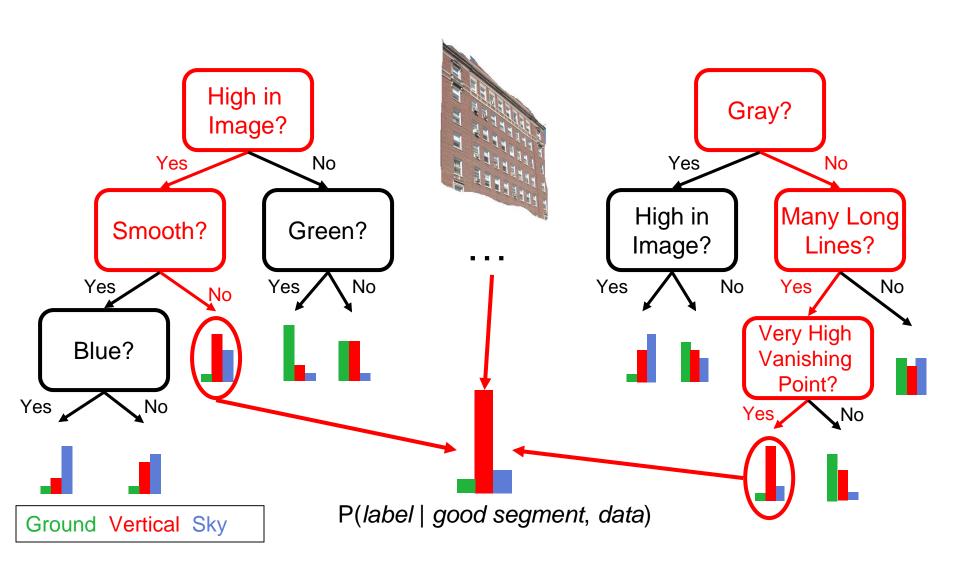


Ensemble Methods: Boosting

Discrete AdaBoost(Freund & Schapire 1996b)

- Start with weights w_i = 1/N, i = 1,..., N.
- 2. Repeat for m = 1, 2, ..., M:
 - (a) Fit the classifier $f_m(x) \in \{-1,1\}$ using weights w_i on the training data.
 - (b) Compute $err_m = E_w[1_{(y \neq f_m(x))}], c_m = \log((1 err_m)/err_m).$
 - (c) Set $w_i \leftarrow w_i \exp[c_m \cdot 1_{(y_i \neq f_m(x_i))}], i = 1, 2, ..., N$, and renormalize so that $\sum_i w_i = 1$.
- 3. Output the classifier sign[$\sum_{m=1}^{M} c_m f_m(x)$]

Boosted Decision Trees



Using Boosted Decision Trees

- Flexible: can deal with both continuous and categorical variables
- How to control bias/variance trade-off
 - Size of trees
 - Number of trees
- Boosting trees often works best with a small number of well-designed features
- Boosting "stubs" can give a fast classifier

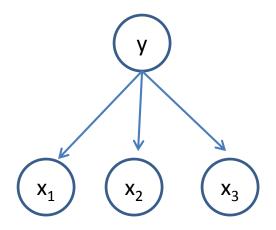
Generative classifiers

- Model the joint probability of the features and the labels
 - Allows direct control of independence assumptions
 - Can incorporate priors
 - Often simple to train (depending on the model)

- Examples
 - Naïve Bayes
 - Mixture of Gaussians for each class

Naïve Bayes

- Objective
- Parameterization
- Regularization
- Training
- Inference

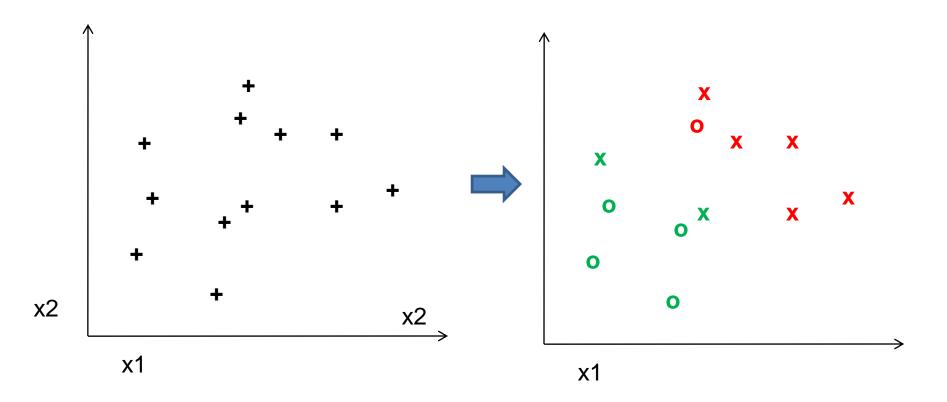


Using Naïve Bayes

Simple thing to try for categorical data

Very fast to train/test

Clustering (unsupervised)



Many classifiers to choose from

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Deep networks
- Etc.

Which is the best one?

No Free Lunch Theorem

Generalization Theory

 It's not enough to do well on the training set: we want to also make good predictions for new examples

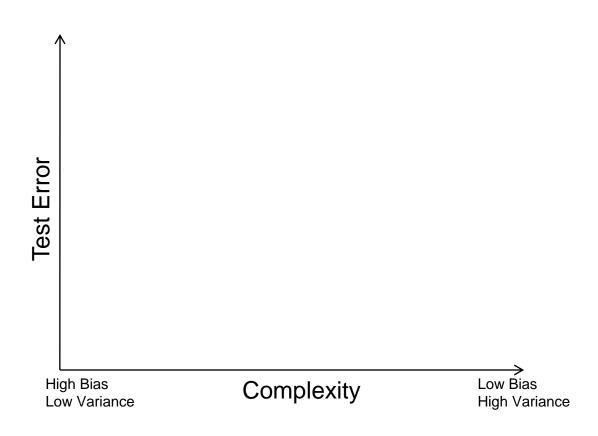
Bias-Variance Trade-off

See the following for explanation of bias-variance (also Bishop's "Neural Networks" book):

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

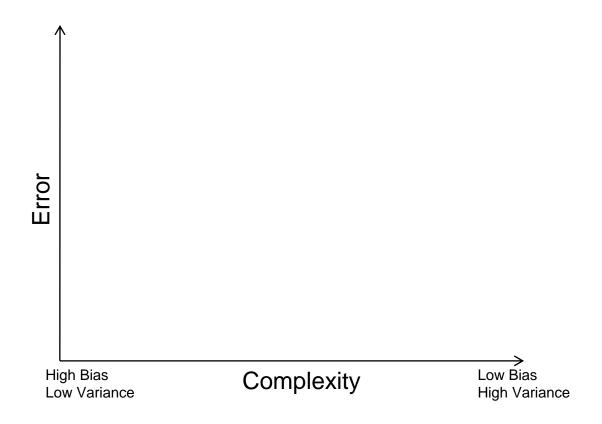
Bias and Variance

 $Error = noise^2 + bias^2 + variance$



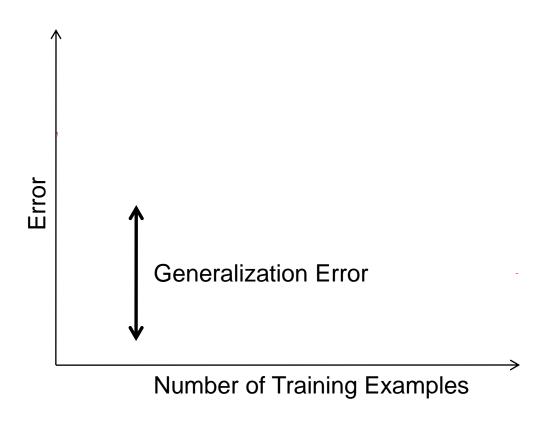
Choosing the trade-off

- Need validation set
- Validation set is separate from the test set



Effect of Training Size

Fixed classifier



How to measure complexity?

VC dimension

What is the VC dimension of a linear classifier for N-dimensional features? For a nearest neighbor classifier?

Upper bound on generalization error

Test error <= Training error +
$$\sqrt{\frac{h(\log(2N/h)+1)-\log(\eta/4)}{N}}$$

N: size of training set

h: VC dimension

 η : 1-probability that bound holds

Other ways: number of parameters, etc.

How to reduce variance?

Choose a simpler classifier

Regularize the parameters

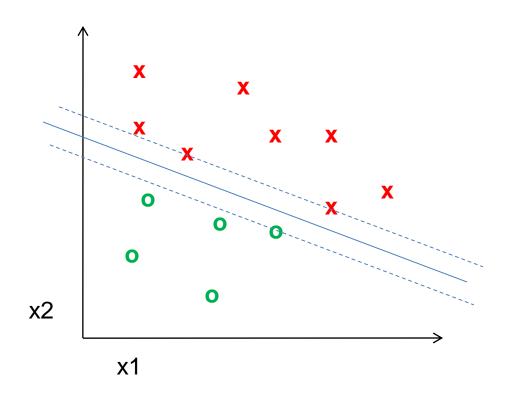
Use fewer features

Get more training data

Which of these could actually lead to greater error?

Reducing Risk of Error

Margins



The perfect classification algorithm

- Objective function: encodes the right loss for the problem
- Parameterization: makes assumptions that fit the problem
- Regularization: right level of regularization for amount of training data
- Training algorithm: can find parameters that maximize objective on training set
- Inference algorithm: can solve for objective function in evaluation

Comparison

assuming x in {0 1}

Learning	Objective
----------	-----------

Training

Inference

maximize
$$\sum_{i} \left[\sum_{j=1}^{i} \log P(x_{ij} | y_{i}; \theta_{j}) \right] \qquad \theta_{kj} = \frac{\sum_{i} \delta(x_{ij} = 1 \land y_{i} = k) + r}{\sum_{i} \delta(y_{i} = k) + Kr}$$

$$\theta_{kj} = \frac{\sum_{i} \delta(x_{ij} = 1 \land y_{i} = k) + r}{\sum_{i} \delta(y_{i} = k) + Kr}$$

$$\theta_{1}^{T} \mathbf{x} + \theta_{0}^{T} (1 - \mathbf{x}) > 0$$
where $\theta_{1j} = \log \frac{P(x_{j} = 1 | y = 1)}{P(x_{j} = 1 | y = 0)}$,
$$\theta_{0j} = \log \frac{P(x_{j} = 0 | y = 1)}{P(x_{j} = 0 | y = 0)}$$

maximize
$$\sum_{i} \log(P(y_i \mid \mathbf{x}, \mathbf{\theta})) + \lambda \|\mathbf{\theta}\|$$

where $P(y_i \mid \mathbf{x}, \mathbf{\theta}) = 1/(1 + \exp(-y_i \mathbf{\theta}^T \mathbf{x}))$

$$\mathbf{\theta}^T \mathbf{x} > t$$

minimize
$$\lambda \sum_{i} \xi_{i} + \frac{1}{2} \| \mathbf{0} \|$$

such that $y_{i} \mathbf{0}^{T} \mathbf{x} \ge 1 - \xi_{i} \ \forall i, \ \xi_{i} \ge 0$

$$\mathbf{\theta}^T \mathbf{x} > t$$

$$\sum_{i} y_{i} \alpha_{i} K(\hat{\mathbf{x}}_{i}, \mathbf{x}) > 0$$

$$y_i$$
where $i = \underset{i}{\operatorname{argmin}} K(\hat{\mathbf{x}}_i, \mathbf{x})$

Characteristics of vision learning problems

- Lots of continuous features
 - E.g., HOG template may have 1000 features
 - Spatial pyramid may have ~15,000 features

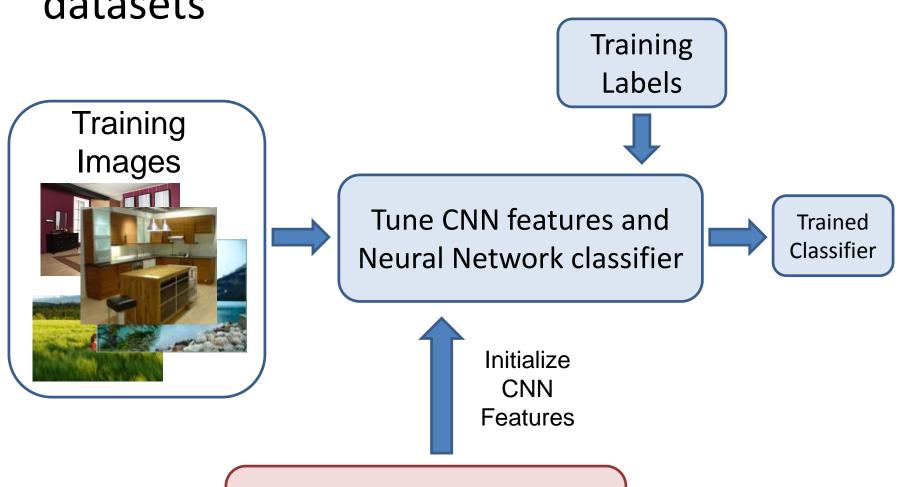
- Imbalanced classes
 - often limited positive examples, practically infinite negative examples

Difficult prediction tasks

When a massive training set is available

- Relatively new phenomenon
 - MNIST (handwritten letters) in 1990s, LabelMe in 2000s, ImageNet (object images) in 2009, ...
- Want classifiers with low bias (high variance ok) and reasonably efficient training
- Very complex classifiers with simple features are often effective
 - Random forests
 - Deep convolutional networks

New training setup with moderate sized datasets



Dataset similar to task with millions of labeled examples

Practical tips

- Preparing features for linear classifiers
 - Often helps to make zero-mean, unit-dev
 - For non-ordinal features, convert to a set of binary features
- Selecting classifier meta-parameters (e.g., regularization weight)
 - Cross-validation: split data into subsets; train on all but one subset, test on remaining;
 repeat holding out each subset
 - Leave-one-out, 5-fold, etc.
- Most popular classifiers in vision
 - SVM: linear for when fast training/classification is needed; performs well with lots of weak features
 - Logistic Regression: outputs a probability; easy to train and apply
 - Nearest neighbor: hard to beat if there is tons of data (e.g., character recognition)
 - Boosted stumps or decision trees: applies to flexible features, incorporates feature selection, powerful classifiers
 - Random forests: outputs probability; good for simple features, tons of data
 - Deep networks / CNNs: flexible output; learns features; adapt existing network (which is trained with tons of data) or train new with tons of data
- Always try at least two types of classifiers

What to remember about classifiers

- No free lunch: machine learning algorithms are tools
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
 - Though with enough data, smart features can be learned
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)

Some Machine Learning References

General

- Tom Mitchell, Machine Learning, McGraw Hill, 1997
- Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995

Adaboost

 Friedman, Hastie, and Tibshirani, "Additive logistic regression: a statistical view of boosting", Annals of Statistics, 2000

SVMs

http://www.support-vector.net/icml-tutorial.pdf

Random forests

 http://research.microsoft.com/pubs/155552/decisionForests MSR TR 2011 114.pdf

Next class

Detection using sliding windows and region proposals