02/19/15

Alignment and Object Instance Recognition

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

Today's class

• Fitting/Alignment (continued)

• Object instance recognition

Example of alignment-based category recognition

Methods discussed last class

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

 $N_{I} = 6$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of sampled points s
 - Minimum number needed to fit the model
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²

$$N = log(1-p)/log(1-(1-e)^{s})$$

	proportion of outliers e							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Sensitive to noise (with high noise might not be able to estimate parameters from any sample)
- Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Line Fitting Demo (Part 2)

Alignment

• Alignment: find parameters of model that maps one set of points to another

- Typically want to solve for a global transformation that accounts for most true correspondences
- Difficulties
 - Noise (typically 1-3 pixels)
 - Outliers (often 30-50%)
 - Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine: p' = T(p)

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

p' = Tp

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common transformations

original

Transformed

translation

rotation

aspect

affine

perspective

Slide credit (next few slides): A. Efros and/or S. Seitz

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

• Or, in matrix form: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

scaling matrix S

2-D Rotation

2-D Rotation

Polar coordinates... $x = r \cos (\phi)$ $y = r \sin (\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

Trig Identity... $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute... $x' = x \cos(\theta) - y \sin(\theta)$ $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- -x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^{T}$

Basic 2D transformations

 $\begin{vmatrix} x \\ y' \end{vmatrix} = \begin{vmatrix} 1 & \alpha_x \\ \alpha & 1 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$

Shear

 $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f \end{bmatrix} \begin{vmatrix} x\\y\\1 \end{vmatrix}$ Affine is any combination of translation, scale, rotation, shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

or

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

 $\begin{vmatrix} x' \\ y' \\ w' \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$

2D image transformations (reference table)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right t ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Given matched points in {A} and {B}, estimate the translation of the object

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or eigenvalue decomposition

Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers

Problem: no initial guesses for correspondence

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- **1. Initialize** transformation (e.g., compute difference in means and scale)
- **2.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- **3.** Estimate transformation parameters
 - e.g., least squares or robust least squares
- 4. Transform the points in {Set 1} using estimated parameters
- 5. Repeat steps 2-4 until change is very small

Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence

Example: aligning boundaries

- 1. Extract edge pixels $p_1 \dots p_n$ and $q_1 \dots q_m$
- 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
- 3. Get nearest neighbors: for each point p_i find corresponding match(i) = argmin dist(pi, qj)
- 4. Compute transformation *T* based on matches
- 5. Warp points **p** according to **T**
- 6. Repeat 3-5 until convergence

Algorithm Summary

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Robust Least Squares
 - improves robustness to noise
 - requires iterative optimization
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
 - For local alignment only: does not require initial correspondences

Object Instance Recognition

- 1. Match keypoints to object model
- 2. Solve for affine transformation parameters
- Score by inliers and choose solutions with score above threshold

Overview of Keypoint Matching

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Finding the objects (overview)

1. Match interest points from input image to database image

- 2. Matched points vote for rough position/orientation/scale of object
- 3. Find position/orientation/scales that have at least three votes
- 4. Compute affine registration and matches using iterative least squares with outlier check
- 5. Report object if there are at least T matched points

Matching Keypoints

- Want to match keypoints between:
 - 1. Query image
 - 2. Stored image containing the object
- Given descriptor x₀, find two nearest neighbors x₁, x₂ with distances d₁, d₂

x₁ matches x₀ if d₁/d₂ < 0.8

 This gets rid of 90% false matches, 5% of true matches in Lowe's study

Affine Object Model

 Accounts for 3D rotation of a surface under orthographic projection

Affine Object Model

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0\\0 & 0 & 0 & x_1 & y_1 & 1\\x_2 & y_2 & 1 & 0 & 0 & 0\\\vdots & \vdots & & & \end{bmatrix} \begin{bmatrix} a\\b\\c\\d\\e\\f \end{bmatrix} = \begin{bmatrix} x'_1\\y'_1\\x'_2\\\vdots \end{bmatrix} \qquad \mathbf{x} = [\mathbf{A}^{\mathrm{T}}\mathbf{A}]^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

What is the minimum number of matched points that we need?

Finding the objects (in detail)

- 1. Match interest points from input image to database image
- 2. Get location/scale/orientation using Hough voting
 - In training, each point has known position/scale/orientation wrt whole object
 - Matched points vote for the position, scale, and orientation of the entire object
 - Bins for x, y, scale, orientation
 - Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)
 - Vote for two closest bin centers in each direction (16 votes total)
- 3. Geometric verification
 - For each bin with at least 3 keypoints
 - Iterate between least squares fit and checking for inliers and outliers
- 4. Report object if > T inliers (T is typically 3, can be computed to match some probabilistic threshold)

Examples of recognized objects

View interpolation

- Training
 - Given images of different viewpoints
 - Cluster similar viewpoints using feature matches
 - Link features in adjacent views

- Recognition
 - Feature matches may be spread over several training viewpoints
 - ⇒ Use the known links to "transfer votes" to other viewpoints

[Lowe01]

Slide credit: David Lowe

Applications

- Sony Aibo (Evolution Robotics)
- SIFT usage
 - Recognize docking station
 - Communicate
 with visual cards
- Other uses
 - Place recognition
 - Loop closure in SLAM

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

Location Recognition

[Lowe04] Slide credit: David Lowe

Another application: category recognition

- Goal: identify what type of object is in the image
- Approach: align to known objects and choose category with best match

"Shape matching and object recognition using low distortion correspondence", Berg et al., CVPR 2005: <u>http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf</u>

Summary of algorithm

- Input: query *q* and exemplar *e*
- For each: sample edge points and create "geometric blur" descriptor
- Compute match cost c to match points in q to each point in e
- Compute deformation cost H that penalizes change in orientation and scale for pairs of matched points
- Solve a binary quadratic program to get correspondence that minimizes c and H, using thin-plate spline deformation
- Record total cost for *e*, repeat for all exemplars, choose exemplar with minimum cost

Input, Edge Maps

Geometric Blur

Feature Points

Examples of Matches

Examples of Matches

Other ideas worth being aware of

• <u>Thin-plate splines</u>: combines global affine warp with smooth local deformation

 Robust non-rigid point matching: <u>http://noodle.med.yale.edu/~chui/tps-rpm.html</u> (includes code, demo, paper)

Key concepts

- Alignment
 - Hough transform
 - RANSAC
 - ICP

(t_x, t_y)

- Object instance recognition
 - Find keypoints, compute descriptors
 - Match descriptors
 - Vote for / fit affine parameters
 - Return object if # inliers > T

