
Edge Detection

Computer Vision (CS 543 / ECE 549)

University of Illinois

Derek Hoiem

02/05/15

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li

Magritte,

“Decalcomania”

Last class

• How to use filters for
– Matching

– Compression

• Image representation with pyramids

• Texture and filter banks

Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median

Other non-linear filters

• Weighted median (pixels further from center count less)

• Clipped mean (average, ignoring few brightest and darkest
pixels)

• Max or min filter (ordfilt2)

• Bilateral filtering (weight by spatial distance and intensity
difference)

http://vision.ai.uiuc.edu/?p=1455Image:

Bilateral filtering

http://vision.ai.uiuc.edu/?p=1455

Bilateral filters

• Edge preserving: weights similar pixels more

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Original Gaussian Bilateral

spatial similarity (e.g., intensity)

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Today’s class

• Detecting edges

• Finding straight lines

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Why finding edges is important

• Group pixels into objects
or parts

• Cues for 3D shape

• Guiding interactive image
editing

Closeup of edges

Closeup of edges

Closeup of edges

Closeup of edges

Characterizing edges

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Intensity profile Intensity

Gradient

With a little Gaussian noise

Gradient

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d

f

g

f * g

)(gf
dx

d

Source: S. Seitz

• Differentiation is convolution, and convolution is
associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
)(

Derivative theorem of convolution

g
dx

d
f

f

g
dx

d

Source: S. Seitz

Derivative of Gaussian filter

• Is this filter
separable?

* [1 0 -1] =

• Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth

Designing an edge detector

• Criteria for a good edge detector:
– Good detection: find all real edges, ignoring noise or other

artifacts

– Good localization

• detect edges as close as possible to the true edges

• return one point only for each true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the boundary

– Continuity and closure

– High-level knowledge

Source: L. Fei-Fei

Canny edge detector

• This is probably the most widely used edge
detector in computer vision

• Theoretical model: step-edges corrupted by
additive Gaussian noise

• Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

input image (“Lena”)

Derivative of Gaussian filter

x-direction y-direction

Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Get Orientation at Each Pixel

• Threshold at minimum level

• Get orientation

theta = atan2(-gy, gx)

Non-maximum suppression for each
orientation

At q, we have a

maximum if the

value is larger than

those at both p and

at r. Interpolate to

get these values.

Source: D. Forsyth

Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

• imx2 = imresize(im, 2, interpolation_type)

• ‘nearest’
– Copy value from nearest known
– Very fast but creates blocky edges

• ‘bilinear’
– Weighted average from four nearest known

pixels
– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area
– Slower, visually appealing, may create

negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels

Hysteresis thresholding

• Check that maximum value of gradient
value is sufficiently large

– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Final Canny Edges

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and the low
threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

Effect of (Gaussian kernel spread/size)

Canny with Canny with original

The choice of depends on desired behavior
• large detects large scale edges

• small detects fine features

Source: S. Seitz

Learning to detect boundaries

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detection

Natural Boundaries…

http://www.eecs.berkeley.edu/Research/Projects/C

S/vision/grouping/papers/mfm-pami-boundary.pdf

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

pB Boundary Detector

Figure from Fowlkes

Brightness

Color

Texture

Combined

Human

Results

Human (0.95)

Pb (0.88)

Results

Human

Pb

Human (0.96)

Global PbPb (0.88)

Human (0.95)

Pb (0.63)

Human (0.90)

Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects

/CS/vision/bsds/bench/html/108082-color.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Global pB boundary detector

Figure from Fowlkes

Edge Detection with Structured Random Forests
(Dollar Zitnick ICCV 2013)

• Goal: quickly predict whether each pixel is an
edge

• Insights
– Predictions can be learned from training data
– Predictions for nearby pixels should not be

independent

• Solution
– Train structured random forests to split data

into patches with similar boundaries based on
features

– Predict boundaries at patch level, rather than
pixel level, and aggregate (average votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries

in patch

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Edge Detection with Structured Random Forests

• Algorithm
1. Extract overlapping 32x32 patches

at three scales

2. Features are pixel values and
pairwise differences in feature
maps (LUV color, gradient
magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the
central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel
across all patches

Edge Detection with Structured Random Forests

Results

BSDS 500 NYU Depth dataset edges

Edge Detection with Structured Random Forests

Ground truth

Results (multiscale)

Crisp Boundary Detection using Pointwise
Mutual Information (Isola et al. ECCV 2014)

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Pixel combinations that are unlikely to be together are edges

Algorithm: Spectral clusteringKernel density estimation

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Crisp Boundary Detection using Pointwise
Mutual Information

State of edge detection

• Local edge detection is mostly solved
– Intensity gradient, color, texture

• Work on RGB-D edge detection is currently more active

• Some methods take into account longer contours, but
could probably do better

• Often used in combination with object detectors or
region classifiers

Finding straight lines

Finding line segments using connected
components

1. Compute canny edges
– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:
– find connected components for edge pixels with directions in {d-1, d,

d+1}

4. Compute straightness and theta of edgelets using eig of x,y
2nd moment matrix of their points

5. Threshold on straightness, store segment

2

2

yyx

yxx

yyx

yxx

M)eig(],[Μλv

))2,1(),2,2(2(atan vv

12 /conf

Larger eigenvector

2. Canny lines … straight edges

Homework 1

• Due Feb 16, but try to finish by Tues (HW 2
will take quite a bit more time)

https://courses.engr.illinois.edu/cs543/sp2015/hw/hw1_cs543_sp15.pdf

https://courses.engr.illinois.edu/cs543/sp2015/hw/hw1_cs543_sp15.pdf

Things to remember

• Canny edge detector = smooth
 derivative thin threshold
link

• Pb: learns weighting of gradient, color,
texture differences
– More recent learning approaches give at

least as good accuracy and are faster

• Straight line detector = canny +
gradient orientations orientation
binning linking check for
straightness

Next classes: Correspondence and Alignment

• Detecting interest points

• Tracking points

• Object/image alignment and registration

– Aligning 3D or edge points

– Object instance recognition

– Image stitching

