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Last class

• How to use filters for
– Matching

– Compression

• Image representation with pyramids

• Texture and filter banks



Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median



Other non-linear filters

• Weighted median (pixels further from center count less)

• Clipped mean (average, ignoring few brightest and darkest 
pixels)

• Max or min filter (ordfilt2)

• Bilateral filtering (weight by spatial distance and intensity 
difference)

http://vision.ai.uiuc.edu/?p=1455Image:

Bilateral filtering

http://vision.ai.uiuc.edu/?p=1455


Bilateral filters

• Edge preserving: weights similar pixels more

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Original Gaussian Bilateral

spatial similarity (e.g., intensity)

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf


Today’s class

• Detecting edges

• Finding straight lines



Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



Why finding edges is important

• Group pixels into objects 
or parts

• Cues for 3D shape

• Guiding interactive image 
editing



Closeup of edges



Closeup of edges



Closeup of edges



Closeup of edges



Characterizing edges

• An edge is a place of rapid change in the 
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative



Intensity profile Intensity

Gradient



With a little Gaussian noise

Gradient



Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz



Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very 
different from their neighbors

– Generally, the larger the noise the stronger the 
response

• What can we do about it?

Source: D. Forsyth



Solution: smooth first

• To find edges, look for peaks in )( gf
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Source: S. Seitz



• Differentiation is convolution, and convolution is 
associative:

• This saves us one operation:
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Source: S. Seitz



Derivative of Gaussian filter

• Is this filter 
separable?

* [1 0 -1] = 



• Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth



Designing an edge detector

• Criteria for a good edge detector:
– Good detection: find all real edges, ignoring noise or other 

artifacts

– Good localization

• detect edges as close as possible to the true edges

• return one point only for each true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the boundary

– Continuity and closure

– High-level knowledge

Source: L. Fei-Fei



Canny edge detector

• This is probably the most widely used edge 
detector in computer vision

• Theoretical model: step-edges corrupted by 
additive Gaussian noise

• Canny has shown that the first derivative of 
the Gaussian closely approximates the 
operator that optimizes the product of 
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE 

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Example

input image (“Lena”)



Derivative of Gaussian filter

x-direction y-direction



Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude



Get Orientation at Each Pixel

• Threshold at minimum level

• Get orientation

theta = atan2(-gy, gx)



Non-maximum suppression for each 
orientation

At q, we have a 

maximum if the 

value is larger than 

those at both p and 

at r. Interpolate to 

get these values.

Source: D. Forsyth



Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation


Sidebar: Interpolation options

• imx2 = imresize(im, 2, interpolation_type)

• ‘nearest’ 
– Copy value from nearest known
– Very fast but creates blocky edges

• ‘bilinear’
– Weighted average from four nearest known 

pixels
– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area
– Slower, visually appealing, may create 

negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation


Before Non-max Suppression



After non-max suppression



Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels



Hysteresis thresholding

• Check that maximum value of gradient 
value is sufficiently large

– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low 
threshold to continue them.

Source: S. Seitz



Final Canny Edges



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and the low 
threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei



Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. Seitz



Learning to detect boundaries

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detection 

Natural Boundaries…

http://www.eecs.berkeley.edu/Research/Projects/C

S/vision/grouping/papers/mfm-pami-boundary.pdf

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf


pB Boundary Detector

Figure from Fowlkes



Brightness

Color

Texture

Combined

Human



Results

Human (0.95)

Pb (0.88)



Results

Human

Pb

Human (0.96)

Global PbPb (0.88)



Human (0.95)

Pb (0.63)



Human (0.90)

Pb (0.35)

For more: 

http://www.eecs.berkeley.edu/Research/Projects

/CS/vision/bsds/bench/html/108082-color.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html


Global pB boundary detector

Figure from Fowlkes



Edge Detection with Structured Random Forests 
(Dollar Zitnick ICCV 2013)

• Goal: quickly predict whether each pixel is an 
edge

• Insights
– Predictions can be learned from training data
– Predictions for nearby pixels should not be 

independent

• Solution
– Train structured random forests to split data 

into patches with similar boundaries based on 
features

– Predict boundaries at patch level, rather than 
pixel level, and aggregate (average votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries 

in patch

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf


Edge Detection with Structured Random Forests

• Algorithm
1. Extract overlapping 32x32 patches 

at three scales

2. Features are pixel values and 
pairwise differences in feature 
maps (LUV color, gradient 
magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the 
central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel 
across all patches



Edge Detection with Structured Random Forests

Results

BSDS 500 NYU Depth dataset edges



Edge Detection with Structured Random Forests

Ground truth

Results (multiscale)



Crisp Boundary Detection using Pointwise
Mutual Information (Isola et al. ECCV 2014)

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Pixel combinations that are unlikely to be together are edges

Algorithm: Spectral clusteringKernel density estimation

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf


Crisp Boundary Detection using Pointwise
Mutual Information



State of edge detection

• Local edge detection is mostly solved
– Intensity gradient, color, texture 

• Work on RGB-D edge detection is currently more active

• Some methods take into account longer contours, but 
could probably do better

• Often used in combination with object detectors or 
region classifiers



Finding straight lines



Finding line segments using connected 
components

1. Compute canny edges
– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:
– find connected components for edge pixels with directions in {d-1, d, 

d+1}

4. Compute straightness and theta of edgelets using eig of x,y
2nd moment matrix of their points

5. Threshold on straightness, store segment
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2. Canny lines  … straight edges



Homework 1

• Due Feb 16, but try to finish by Tues (HW 2 
will take quite a bit more time)

https://courses.engr.illinois.edu/cs543/sp2015/hw/hw1_cs543_sp15.pdf

https://courses.engr.illinois.edu/cs543/sp2015/hw/hw1_cs543_sp15.pdf


Things to remember

• Canny edge detector =            smooth 
 derivative  thin  threshold 
link

• Pb: learns weighting of gradient, color, 
texture differences
– More recent learning approaches give at 

least as good accuracy and are faster

• Straight line detector =               canny + 
gradient orientations  orientation 
binning  linking  check for 
straightness



Next classes: Correspondence and Alignment

• Detecting interest points

• Tracking points

• Object/image alignment and registration

– Aligning 3D or edge points

– Object instance recognition

– Image stitching


