CHEMNITZ UNIVERSITY OF
TECHNOLOGY

Superpixel Benchmark - Starting Guide

Peer Neubert, peer.neubert@etit.tu-chemnitz.de

Contents

1 Introduction 1

2 How To Use The Image Data 2

3 How To Benchmark Segmentation Quality 2
3.1 Overview & BPF 2
3.2 Qall Hierarchy 3
3.3 Example Run 4

4 How To Benchmark Segmentation Robustness 4
4.1 Overview & APF 4
4.2 Call Hierarchy 5
43 Example Run)

1 Introduction

We provide two benchmarks: one for segmentation quality and another for robustness
against affine transformations. This is a short documentation. Feel free to contact the
autors in case of questions. Prerequisites to run the benchmark are:

e The benchmark toolbox:
http://www.tu-chemnitz.de/etit/proaut/forschung/superpixel.html

e Matlab with Image Processing Toolbox

e BSDS 500 images:
http//www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/
BSR_bsds500.tgz

e The benchmark is tested only under Linux operating systems

FEEE CHEMNITZ UNIVERSITY OF TECHNOLOGY

2 How To Use The Image Data

The BSDS 500 images are divided into 200 training images, 100 validation images and
200 test images. These image sets can be accessed via BPF files by setting “mode” to
train, val or test (see section 3.1)

train Training data is aimed for training or learning. When additional data is used for
training, this should be stated.

val This is the validation data set for parameter adjusting. It is valid to use the
training data for parameter adjusting as well.

test For the final benchmark, exactly these 200 test images have to be used. This
data must not be used for parameter adjusting. Use this data rarely and with
caution.

The BSDS500 dataset contains multiple ground truth segmentations for each image.
These are manual labelings of object borders. Since superpixel segmentation is by
definition an oversegmentation of the image, those multiple manual segmentations are
combined to a single boundary map. This boundary map states for each pixel if this
was marked as a boundary in at least one manual segmentation.

3 How To Benchmark Segmentation Quality
3.1 Overview & BPF

There are three steps:
1. Run segmentation algorithm to segment images (rundlgorithm.m)
2. Compute the benchmark error metrics (runBenchmark.m)
3. Show the results (evaluate Benchmark.m)

main_benchmark.m runs all three steps. Configuration of the algorithm settings is
done with Benchmark-Parameter-Files (bpf-files) BPFs are simple textfiles contain-
ing the configuration of the benchmark and the algorithm. They contain variable
name-value pairs and are parsed by the parseBenchmarkParameterFile function from
parseBenchmarkParameterFile.m

mode (val or train or test) Use BSDS500 validation, training or test data

BSDS500_root path to the BSDS500 image folder
(e.g. /home/user/bsds500/BSR/BSDS500/data)

nImages number of images (e.g. 200 for test)

FEEE CHEMNITZ UNIVERSITY OF TECHNOLOGY

algResSavePath path where the results (segmented images and evaluations) are
stored. At this path a seperate folder for each parameter set of the algorithm is created.

algorithmCommand This is the tricky part. This is the line of code that is ex-
ecuted by Matlab. There are three predefined variables:

e [is the input image (for BSDS500: 8bit three channel RGB image).

e S is the resulting segmentation image (multi label image, integer, all pixels of the
same segment have the same image value, maximum value equals the number of
segments).

e time is the runtime in seconds.

All other vaiable names are variables, that can be set in BPF file with the parameterset
keyword. These variables are replaced with the value of the current parameterset.

parameterset Here, parameters for one setting of the algorithm are given. Write
multiple parameterset (each at one line) with different varaible values and all will
be evaluated. The parameterSet keyword is followed by name-value pairs of either
predefined keywords (e.g. parametersetName) or variables from algorithmCommand.
parametersetName is the name of the parameter set in this line and is used to define
the name of the subfolder for the storage of the results.

For variables from algorithmCommand: During runAlgorithm-function, the vari-
able values are set via text replacement into the algorithmCommand. Take care to
use names that do not appear at other places in algorithmCommand! To not use a
parameterset, just comment it with a # or % or //

3.2 Call Hierarchy

Despite there are several files and functions necessary for the benchmark, there is a
(hopefully) clear strcuture and flat call hierarchy:
main_benchmark.m
runAlgorithm.m
parseBenchmarkParameterFile.m
loadBSDS500.m
runBenchmark.m
parseBenchmarkParameterFile.m
loadBSDS500.m
multiLabelImage2boundaryImage.m
combineMultiple BoundaryImages.m
compareBoundaryImagesSimple.m

getUndersegmentationError.m

FEEE CHEMNITZ UNIVERSITY OF TECHNOLOGY

evaluate Benchmark.m
prepare BoundaryRecallPlot.m
prepare UndersegmentationErrorPlot.m
prepareRuntimePlot.m
getHighContrastColormap.m
eval BPF_plot.m

parseBenchmarkParameterFile.m

3.3 Example Run

This example shows application of the toolbox for benchmarking a new algorithm.
Make sure to have the BSDS 500 images available. However, you do not need your
own segmentation algorithm, we provide the very simple BOX segmentation algorithm
in segmentation_algorithms/segment_box.m, that divides the image in a regular grid.

% add path to your segmentation algorithm
addpath(’segmentation_algorithms/’);

% create your BPF file , here we use bpf/bpf-BOX. txt
% Very likely you meed to adapt the path to the
% BSDS 500 image data.

% segment images with your algorithm
runAlgorithm (’bpf/bpf BOX. txt ’);

% compute error metrics
runBenchmark ("bpf/bpf BOX. txt ’);

% visualize the results
evaluateBenchmark (’bpf/bpf BOX. txt’);

% visualize the results of several algorithms

% (here two times the same results)

evaluateBenchmark ({ *bpf/bpf BOX. txt’, ’'bpf/bpf BOX.txt’},
'names’, {’BOX1’, ’BOX2’});

4 How To Benchmark Segmentation Robustness

4.1 Overview & APF

Configuration of the affine transformations are implemented via Affine-Parameter-Files
(APF). The idea of APF is similar to the one of a BPF, but here, just the affine trans-
formations and the save path extension are stored.

FEEE CHEMNITZ UNIVERSITY OF TECHNOLOGY

algResSavePathExtension is the folder name extension to the result folder name
from the BPF file

affine_trafo is followed by the name of this transformation and the 3x3 matrix in
row major order.

Example APF files are given for shift, rotation, shear and scale. New ones at least
require adaption of the visualization in evaluateBenchmarkAffine. BPF files for the
affine benchmark typically have just one parameter set, since the variables to evauate
on are the affine parameters.

4.2 Call Hierarchy

main_runAffine.m

runAlgorithmAffine.m
parseBenchmarkParameterFile.m
parseAffineParameterFile.m
loadBSDS500.m
appply Transform.m

runBenchmarkAffine.m
compareBoundaryImagesSimple.m
loadBSDS500.m
multiLabellImage2boundaryImage.m
parseAffineParameterFile.m

parseBenchmarkParameterFile.m

evaluate BenchmarkAffine.m
parseAffineParameterFile.m

parseBenchmarkParameterFile.m

4.3 Example Run

% add path to your segmentation algorithm
addpath (’segmentation_algorithms/’);

create your BPF file , here we use bpf/affine_bpf-BOX_250. tzt that
contains the BOX setting for about 250 segments
Very likely you meed to adapt the path to the BSDS 500 image data.

N N X

xR

main_runAffine.m runs the segmentation algorithm for several APFs.

FEEE CHEMNITZ UNIVERSITY OF TECHNOLOGY

main_runAffine ("bpf/affine_bpf BOX_250.txt ")

% show results on rotation
evaluateBenchmarkAffine ("bpf/affine_ bpf_ BOX_250.txt ",
“apf/apf_rotation.txt’)
evaluateBenchmarkAffine ({ "bpf/affine_bpf_ BOX_250.txt
"bpf/affine_bpf BOX_250.txt’},
“apf/apf_rotation.txt’)

