Computer Vision: Summary and Discussion

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

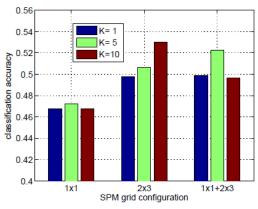
HW 5

 Why did training with subsets 1+5 (vs. subset 1 only) make PCA worse but FLD better?

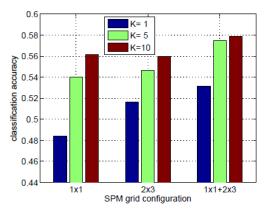
S1 S5

HW 5

- What image categorization approaches worked best?
 - Zhaowen Wang: 80%



HSV Color Hist + KNN



BOW Hist (128) + KNN

BoW + Linear SVM: 69%

Larger Codebook (256): 72.5%

Locality-Constrained Linear Coding: 77%

Add color features: 80%

HW 5

- What image categorization approaches worked best?
 - Abdel Vargas Silva: 85%

Color histograms: 60% (HSV, 16 bins/channel, 1-NN, L1 dist)

BoW: 55% (100 words, 23-NN, L1 dist)

Gist only: 77% (7-NN)

Gist + Color: 85%

Dataset creators (Oliva and Torralba) report 84% with Gist + RBF-SVM (different train/test split)

Today's class

Review of important concepts

Some important open problems

Feedback and course evaluation

Fundamentals of Computer Vision

- Light
 - What an image records
- Geometry
 - How to relate world coordinates and image coordinates
- Matching
 - How to measure the similarity of two regions
- Alignment
 - How to align points/patches
 - How to recover transformation parameters based on matched points
- Grouping
 - What points/regions/lines belong together?
- Categorization
 - What similarities are important?

Light and Color

- Shading of diffuse materials depends on albedo and orientation wrt light
 - Gradients are a major cue for changes in orientation (shape)
- Many materials have a specular component that directly reflects light
- Reflected color depends on albedo and light color
- RGB is default color space, but sometimes others (e.g., HSV, L*a*b) are more useful

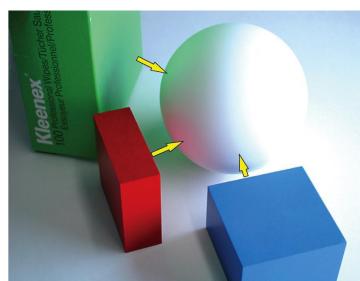


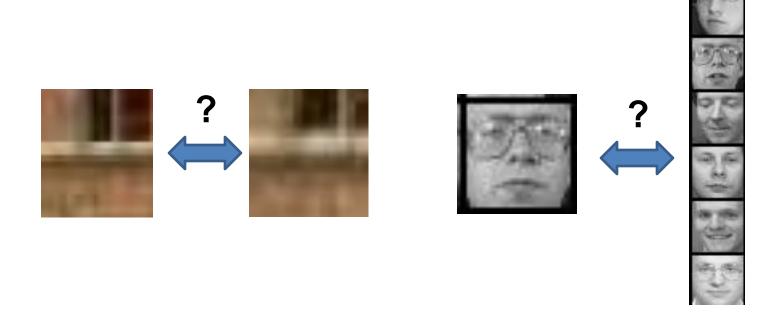
Image from Koenderink

Geometry

- $\mathbf{x} = \mathbf{K} [\mathbf{R} \ \mathbf{t}] \mathbf{X}$
 - Maps 3d point \mathbf{X} to 2d point \mathbf{x}
 - Rotation \mathbf{R} and translation \mathbf{t} map into 3D camera coordinates
 - Intrinsic matrix \mathbf{K} projects from 3D to 2D
- Parallel lines in 3D converge at the vanishing point in the image
 - A 3D plane has a vanishing line in the image
- $\mathbf{x}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$
 - Points in two views that correspond to the same 3D point are related by the fundamental matrix ${f F}$

Matching

- Does this patch match that patch?
 - In two simultaneous views? (stereo)
 - In two successive frames? (tracking, flow, SFM)
 - In two pictures of the same object? (recognition)



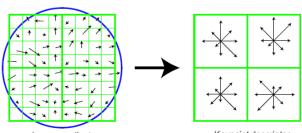
Matching

Representation: be invariant/robust to expected deformations but nothing else

- Assume that shape does not change
 - Key cue: local differences in shading (e.g., gradients)
- Change in viewpoint
 - Rotation invariance: rotate and/or affine warp patch according to dominant orientations
- Change in lighting or camera gain
 - Average intensity invariance: oriented gradient-based matching
 - Contrast invariance: normalize gradients by magnitude
- Small translations
 - Translation robustness: histograms over small regions

But can one representation do all of this?

• SIFT: local normalized histograms of oriented gradients provides robustness to in-plane orientation, lighting, contrast, translation



Keypoint descripto

HOG: like SIFT but does not rotate to dominant orientation

Alignment of points

Search: efficiently align matching patches

- Interest points: find repeatable, distinctive points
 - Long-range matching: e.g., wide baseline stereo, panoramas, object instance recognition
 - Harris: points with strong gradients in orthogonal directions (e.g., corners) are precisely repeatable in x-y
 - Difference of Gaussian: points with peak response in Laplacian image pyramid are somewhat repeatable in x-y-scale

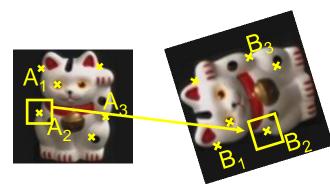
Local search

- Short range matching: e.g., tracking, optical flow
- Gradient descent on patch SSD, often with image pyramid
- Windowed search
 - Long-range matching: e.g., recognition, stereo w/ scanline

Alignment of sets

Find transformation to align matching sets of points

- Geometric transformation (e.g., affine)
 - Least squares fit (SVD), if all matches can be trusted
 - Hough transform: each potential match votes for a range of parameters
 - Works well if there are very few parameters (3-4)
 - RANSAC: repeatedly sample potential matches, compute parameters, and check for inliers
 - Works well if fraction of inliers is high and few parameters (4-8)
- Other cases
 - Thin plate spline for more general distortions
 - One-to-one correspondence (Hungarian algorithm)



Grouping

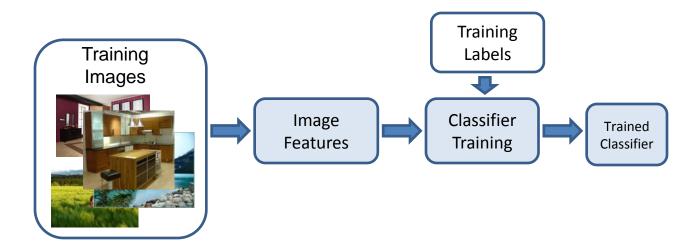
- Clustering: group items (patches, pixels, lines, etc.) that have similar appearance
 - Uses: discretize continuous values; improve efficiency; summarize data
 - Algorithms: k-means, agglomerative

- Segmentation: group pixels into regions of coherent color, texture, motion, and/or label
 - Mean-shift clustering
 - Watershed
 - Graph-based segmentation: e.g., MRF and graph cuts
- EM, mixture models: probabilistically group items that are likely to be drawn from the same distribution, while estimating the distributions' parameters

Categorization

Match objects, parts, or scenes that may vary in appearance

- Categories are typically defined by human and may be related by function, cost, or other non-visual attributes
- Key problem: what are important similarities?
 - Can be learned from training examples



Categorization

Representation: ideally should be compact, comprehensive, direct

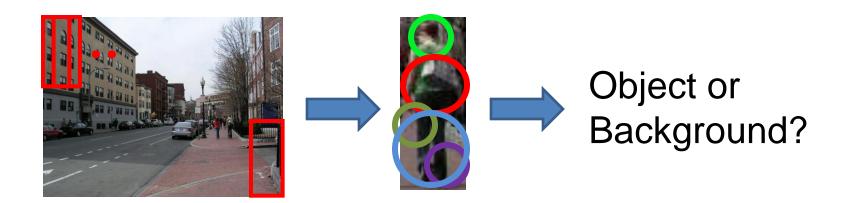
- Histograms of quantized interest points (SIFT, HOG), color, texture
 - Typical for image or region categorization
 - Degree of spatial encoding is controllable by using spatial pyramids
- HOG features at specified position
 - Often used for finding parts or objects

Object Categorization

Search by Sliding Window Detector

May work well for rigid objects

Key idea: simple alignment for simple deformations

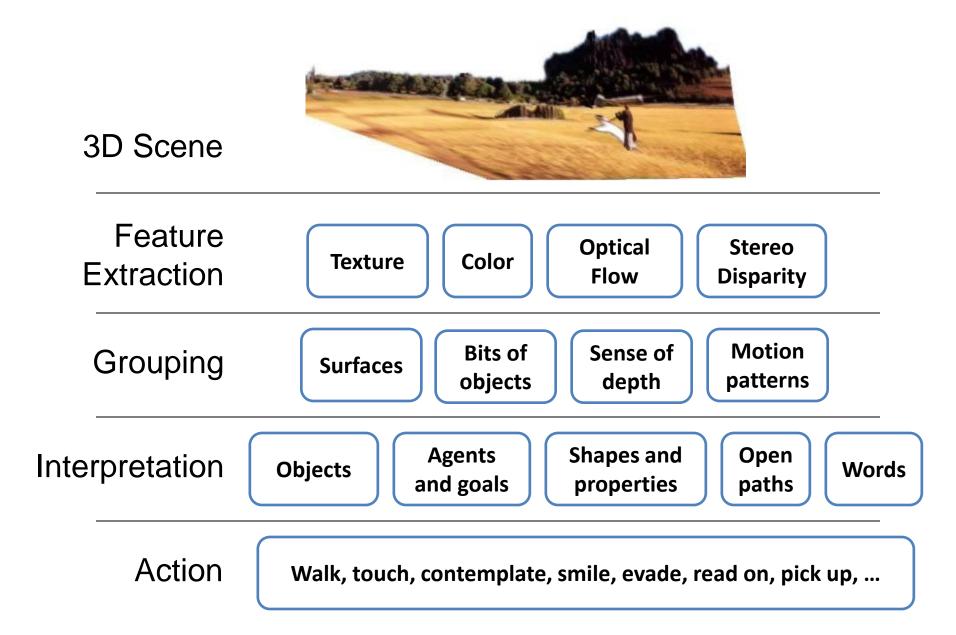


Object Categorization

Search by Parts-based model

- Key idea: more flexible alignment for articulated objects
- Defined by models of part appearance, geometry or spatial layout, and search algorithm

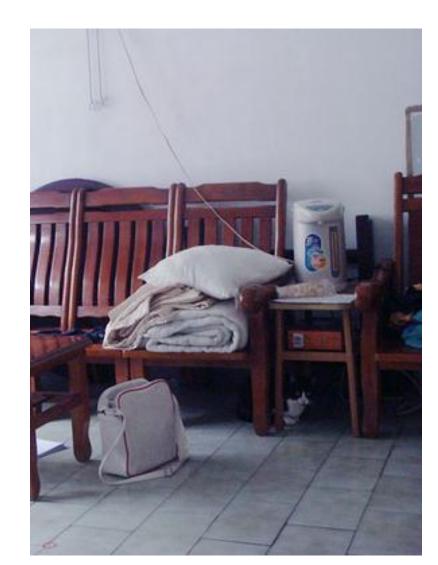
Vision as part of an intelligent system



Computer vision is potentially worth major \$\$\$, but there are major challenges to overcome first.

- Driver assistance
- MobileEye received >\$100M in funding from Goldman Sachs
- Entertainment (Kinect, movies, etc.)
 - Intel is spending \$100M for visual computing over next five years
- Security
 - Potential for billions of deployed cameras
- Robot workers
- Many more

Object category recognition: where is the cat?

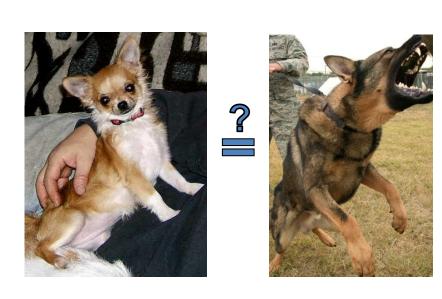


Object category recognition: where is the cat?

Important questions:

- How can we better align two object instances?
- How do we identify the important similarities of objects within a category?
- How do we tell if two patches depict similar shapes?

Object representation: what is it?

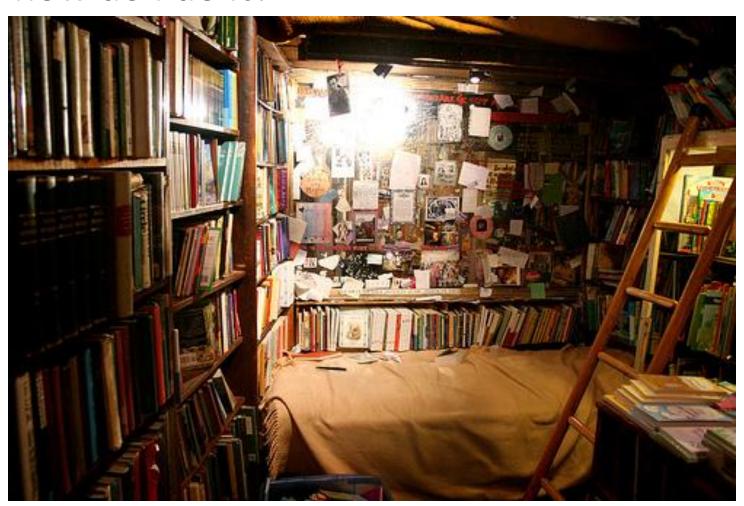


Object representation: what is it?

Important questions:

- How can we pose recognition so that it lets us deal with new objects?
- What do we want to predict or infer, and to what extent does that rely on categorization?
- How do we transfer knowledge of one type of object to another?

 Spatial understanding: what is it doing? Or how do I do it?



 Spatial understanding: what is it doing? Or how do I do it?

Important questions:

- What are good representations of space for navigation and interaction? What kind of details are important?
- How can we combine single-image cues with multi-view cues?

- Algorithms: works pretty well → perfect
 - E.g., stereo: top of wish list from Pixar guy Micheal
 Kass

Good directions:

Incorporate higher level knowledge

 How should we adjust vision systems to solve particular tasks?

- Can we build a "core" vision system that can easily be extended to perform new tasks or even learn on its own?
 - What kind of representations might allow this?
 - What should be built in and what should be learned?

If you want to learn more...

- Read lots of papers: IJCV, PAMI, CVPR, ICCV, ECCV, NIPS
- Helpful topics for classes
 - David Forsyth's optimization
 - Classes in machine learning or pattern recognition
 - Statistics, graphical models
 - Seminar-style paper-reading classes
- Just implement stuff, try demos, see what works

Final projects

- Project posters on Friday
 - Snacks provided
 - Posters: 24" wide x 32" tall
 - Timeline
 - 1:30-1:45 setup
 - 1:45-2:45 Poster group 1
 - 2:45-3:00 short break
 - 3:00-4:00 Poster group 2
 - I will have assignment sheets that specify which projects are in group 1/2 and which projects each person should review

ICES Forms: very important

See you Friday!