Tracking Objects with Dynamics

Computer Vision
CS 543 / ECE 549
University of Illinois

Amin Sadeghi

Today: Tracking Objects

Goal: Locating a moving object/part across video frames

This Class:

- Examples and Applications
- Overview of probabilistic tracking
- Kalman Filter
- Particle Filter

Tracking Examples

Traffic: http://www.youtube.com/watch?v=dlZEakHcD o

Soccer: http://www.youtube.com/watch?v=ZqQIItFAnxg

Face: http://www.youtube.com/watch?v=i bZNVmhJ2o

Body: http://www.youtube.com/watch?v=gRyo-DM2F6E

Eye: http://www.youtube.com/watch?v=NCtYdUEMotg

Gaze: http://www.youtube.com/watch?v=-G6Rw5cU-1c

Further applications

- Motion capture
- Augmented Reality
- Action Recognition
- Security, traffic monitoring
- Video Compression
- Video Summarization
- Medical Screening

Things that make visual tracking difficult

- Small, few visual features
- Erratic movements, Moving very quickly
- Occlusions, leaving and coming back
- Surrounding similar-looking objects

Strategies for tracking

- Tracking by repeated detection
 - Works well if object is easily detectable (e.g., face or colored glove) and there is only one
 - Need some way to link up detections
 - Best you can do, if you can't predict motion

Tracking with dynamics

- Key idea: Based on a model of expected motion, predict where objects will occur in next frame, before even seeing the image
 - Restrict search for the object
 - measurement noise is reduced by trajectory smoothness
 - Robustness to missing or weak observations

Strategies for tracking

- Tracking with motion prediction
 - Predict the object's state in the next frame
 - Kalman filtering: next state can be linearly predicted from current state (Gaussian)
 - Particle filtering: sample multiple possible states of the object (non-parametric, good for clutter)

General model for tracking

- state X: The actual state of the moving object that we want to estimate
 - State could be any combination of position, pose, viewpoint, velocity, acceleration, etc.

- observations Y: Our actual measurement or observation of state X. Observation can be very noisy
- At each time t, the state changes to X_t and we get a new observation Y_t

Steps of tracking

Prediction: What is the next state of the object given past measurements?

$$P(X_t|Y_0=y_0,...,Y_{t-1}=y_{t-1})$$

Steps of tracking

Prediction: What is the next state of the object given past measurements?

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1})$$

 Correction: Compute an updated estimate of the state from prediction and measurements

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1},Y_t = y_t)$$

Simplifying assumptions

Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

Simplifying assumptions

Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

• Measurements depend only on the current state $P(Y_t|X_0,Y_0...,X_{t-1},Y_{t-1},X_t) = P(Y_t|X_t)$

observation model

Simplifying assumptions

Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

• Measurements depend only on the current state $P(Y_t|X_0,Y_0...,X_{t-1},Y_{t-1},X_t) = P(Y_t|X_t)$

observation model

Problem statement

We have models for

Likelihood of next state given current state: $P(X_t|X_{t-1})$ Likelihood of observation given the state: $P(Y_t|X_t)$

• We want to recover, for each t: $P(X_t|y_0,...,y_t)$

Tracking as induction

Base case:

- Start with initial prior that predicts state in absence of any evidence: $P(X_0)$
- For the first frame, correct this given the first measurement: $Y_0 = y_0$

Tracking as induction

• Base case:

- Start with initial prior that predicts state in absence of any evidence: $P(X_0)$
- For the first frame, correct this given the first measurement: $Y_0 = y_0$

$$P(X_0 | Y_0 = y_0) = \frac{P(y_0 | X_0)P(X_0)}{P(y_0)} \propto P(y_0 | X_0)P(X_0)$$

Tracking as induction

Base case:

- Start with initial prior that predicts state in absence of any evidence: $P(X_0)$
- For the first frame, correct this given the first measurement: $Y_0=y_0$
- Given corrected estimate for frame *t-1*:
 - Predict for frame $t \rightarrow P(X_t | y_0, ..., y_{t-1})$
 - Observe y_t ; Correct for frame $t \rightarrow P(X_t | y_0, ..., y_{t-1}, y_t)$

• Prediction involves representing $P(X_t|y_0,...,y_{t-1})$ given $P(X_{t-1}|y_0,...,y_{t-1})$

$$\begin{split} P\big(X_t \big| y_0, \dots, y_{t-1}\big) \\ &= \int P\big(X_t, X_{t-1} \big| y_0, \dots, y_{t-1}\big) dX_{t-1} \\ &\quad \text{Law of total probability} \end{split}$$

• Prediction involves representing $P(X_t|y_0,...,y_{t-1})$ given $P(X_{t-1}|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Conditioning on X_{t-1}

• Prediction involves representing $P(X_t|y_0,...,y_{t-1})$ given $P(X_{t-1}|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Independence assumption

model

• Prediction involves representing $P(X_t|y_0,...,y_{t-1})$ given $P(X_{t-1}|y_0,...,y_{t-1})$

$$\begin{split} P \big(X_t \big| y_0, \dots, y_{t-1} \big) \\ &= \int P \big(X_t, X_{t-1} \big| y_0, \dots, y_{t-1} \big) dX_{t-1} \\ &= \int P \big(X_t \mid X_{t-1}, y_0, \dots, y_{t-1} \big) P \big(X_{t-1} \mid y_0, \dots, y_{t-1} \big) dX_{t-1} \\ &= \int P \big(X_t \mid X_{t-1} \big) P \big(X_{t-1} \mid y_0, \dots, y_{t-1} \big) dX_{t-1} \\ &= \int P \big(X_t \mid X_{t-1} \big) P \big(X_{t-1} \mid y_0, \dots, y_{t-1} \big) dX_{t-1} \\ &\text{dynamics} \qquad \text{corrected estimate} \end{split}$$

from previous step

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}P(X_{t}|y_{0},...,y_{t-1})$$

Bayes' Rule

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}P(X_{t}|y_{0},...,y_{t-1})$$

$$= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

Independence assumption (observation y_t directly depends only on state X_t)

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$ $P(X_t|y_0,...,y_t)$ $= \frac{P(y_t \mid X_t, y_0, ..., y_{t-1})}{P(y_t \mid y_0, ..., y_{t-1})} P(X_t \mid y_0, ..., y_{t-1})$ $= \frac{P(y_t | X_t)P(X_t | y_0,..., y_{t-1})}{P(y_t | y_0,..., y_{t-1})}$ $P(y_t | X_t)P(X_t | y_0,..., y_{t-1})$ $-\int P(y_t \mid X_t) P(X_t \mid y_0, ..., y_{t-1}) dX_t$

Conditioning on X_t

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$ $P(X_t|y_0,...,y_t)$ $= \frac{P(y_t \mid X_t, y_0, ..., y_{t-1})}{P(y_t \mid y_0, ..., y_{t-1})} P(X_t \mid y_0, ..., y_{t-1})$ $= \frac{P(y_t | X_t)P(X_t | y_0,..., y_{t-1})}{P(y_t | y_0,..., y_{t-1})}$ observation $\int P(y_t | X_t) P(X_t | y_0, ..., y_{t-1}) dX_t$

normalization factor

Summary: Prediction and correction

Prediction:

$$P(X_t \mid y_0, \dots, y_{t-1}) = \int P(X_t \mid X_{t-1}) P(X_{t-1} \mid y_0, \dots, y_{t-1}) dX_{t-1}$$
 dynamics corrected estimate

model

from previous step

Correction: observation predicted model estimate
$$P(X_t \mid y_0, ..., y_t) = \frac{P(y_t \mid X_t)P(X_t \mid y_0, ..., y_{t-1})}{\int P(y_t \mid X_t)P(X_t \mid y_0, ..., y_{t-1})dX_t}$$

The Kalman filter

- Linear dynamics model: state undergoes linear transformation plus Gaussian noise
- Observation model: measurement is linearly transformed state plus Gaussian noise

- The predicted/corrected state distributions are Gaussian
 - You only need to maintain the mean and covariance
 - The calculations are easy (all the integrals can be done in closed form)

Example: Kalman Filter

Observation

Prediction

Next Frame

Ground Truth

Correction

Update Location, Velocity, etc.

Comparison

Ground Truth

Observation

Correction

Propagation of Gaussian densities

Particle filtering

Represent the state distribution non-parametrically

- Prediction: Sample possible values X_{t-1} for the previous state
- Correction: Compute likelihood of X_t based on weighted samples and $P(y_t|X_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for visual tracking</u>, IJCV 29(1):5-28, 1998

Particle filtering

Start with weighted samples from previous time step

Sample and shift according to dynamics model

Spread due to randomness; this is predicted density $P(X_t|Y_{t-1})$

Weight the samples according to observation density

Arrive at corrected density estimate $P(X_t|Y_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for visual tracking</u>, IJCV 29(1):5-28, 1998

Propagation of non-parametric densities

Particle filtering results

People: http://www.youtube.com/watch?v=wCMk-pHzScE

Hand: http://www.youtube.com/watch?v=tljuflnUqZM

- Initialization
 - Manual
 - Background subtraction
 - Detection

- Initialization
- Getting observation and dynamics models
 - Observation model: match a template or use a trained detector
 - Dynamics model: usually specify using domain knowledge

- Initialization
- Obtaining observation and dynamics model
- Uncertainty of prediction vs. correction
 - If the dynamics model is too strong, will end up ignoring the data
 - If the observation model is too strong, tracking is reduced to repeated detection

- Initialization
- Getting observation and dynamics models
- Prediction vs. correction
- Data association
 - When tracking multiple objects, need to assign right objects to right tracks (particle filters good for this)

- Initialization
- Getting observation and dynamics models
- Prediction vs. correction
- Data association
- Drift
 - Errors can accumulate over time

Drift

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

Things to remember

Tracking objects = detection + prediction

- Probabilistic framework
 - Predict next state
 - Update current state based on observation

- Two simple but effective methods
 - Kalman filters: Gaussian distribution
 - Particle filters: multimodal distribution

Next class: action recognition

- Action recognition
 - What is an "action"?
 - How can we represent movement?
 - How do we incorporate motion, pose, and nearby objects?