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Administrative stuff 

 

• HW 5 due Tues 

 

• I’m out of town Sun to Tues night 
– Unresponsive on Monday 

– Amin Sadeghi will teach Tues 

 

• Final project posters presented May 4 (1:30-
4:30pm) 
– Final paper: due May 8 



Goal: Detect all instances of objects 
Cars 

Faces 

Cats 



Last class: sliding window detection 



Object model: last class 

• Statistical Template in Bounding Box 

– Object is some (x,y,w,h) in image 

– Features defined wrt bounding box coordinates 

Image Template Visualization 

Images from Felzenszwalb 



Last class: statistical template 

• Object model = log linear model of parts at 
fixed positions 
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When do statistical templates make sense? 

Caltech 101 Average Object Images 



Object models: this class 

• Articulated parts model 

– Object is configuration of parts 

– Each part is detectable 

Images from Felzenszwalb 



Deformable objects 

 

Images from Caltech-256 

Slide Credit: Duan Tran   



Deformable objects 

 

Images from D. Ramanan’s dataset 

 Slide Credit: Duan Tran   



Compositional objects 



Parts-based Models 

Define object by collection of parts modeled by 

1. Appearance 

2. Spatial configuration 

Slide credit: Rob Fergus 



How to model spatial relations? 

• One extreme: fixed template 



How to model spatial relations? 

• Another extreme: bag of words 

= 



How to model spatial relations? 

• Star-shaped model 

Root 

Part 

Part 

Part 

Part 

Part 



How to model spatial relations? 

• Star-shaped model 
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How to model spatial relations? 

• Tree-shaped model 



How to model spatial relations? 

Fergus et al. ’03 

Fei-Fei et al. ‘03 

Leibe et al. ’04, ‘08 

Crandall et al. ‘05 

Fergus et al. ’05 

Crandall et al. ‘05 Felzenszwalb & 

Huttenlocher ‘05 

Bouchard & Triggs ‘05 Carneiro & Lowe ‘06 Csurka ’04 

Vasconcelos ‘00 

from [Carneiro & Lowe, ECCV’06] 

O(N6) O(N2) O(N3) O(N2) 

• Many others... 



Today’s class 

 

1. Star-shaped model  

– Example: ISM  

• Leibe et al. 2004, 2008 

 

 

2. Tree-shaped model 

– Example: Pictorial structures 

• Felzenszwalb Huttenlocher 2005 

Root 

Part 

Part 

Part 

Part 

Part 

http://www.cognitivesystems.org/publications/fulltext.pdf
http://www.cs.cornell.edu/~dph/papers/pict-struct-ijcv.pdf


ISM: Implicit Shape Model 

Training overview 
• Start with bounding boxes and (ideally) segmentations of 

objects 

• Extract local features (e.g., patches or SIFT) at interest points 
on objects 

• Cluster features to  create codebook 

• Record relative bounding box and segmentation for each 
codeword 



ISM: Implicit Shape Model 

Testing overview 
• Extract interest points in test image 

• Softly match to codebook entries 

• Each matched codeword votes for object bounding box 

• Compute modes of votes using mean-shift 

• Check which codewords voted for modes 

• Refine 

 



K. Grauman, B. Leibe 

Codebook Representation 

• Extraction of local object features 
 Interest Points (e.g. Harris detector) 

 Sparse representation of the object appearance 

 

 

 
 

• Collect features from whole training set 
 

• Example: 
 

 

 
 



K. Grauman, B. Leibe 

Agglomerative Clustering 

• Algorithm (Average-Link) 

1. Start with each patch as a cluster of its own 

2. Repeatedly merge the two most similar clusters X and Y,  

where the similarity between two clusters is defined as the 

average similarity between their members 

 

 

 

 

3. Until 
 

 

• Commonly used similarity measures 

 Normalized correlation 

 Euclidean distances 

 

),sim( YX



K. Grauman, B. Leibe 

Appearance Codebook 

 

 

 

 

 

 

 

 

 
 

• Clustering Results 
 Visual similarity preserved 

 Wheel parts, window corners, fenders, ... 

 Store cluster centers as Appearance Codebook 

… 



K. Grauman, B. Leibe 

Voting with Local Features 

• For every feature, store possible “occurrences” 

 

• For new image, let the matched features vote for 

possible object positions 

Record relative size 

and scale of object 



Implicit Shape Model - Recognition 
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K. Grauman, B. Leibe 

 

 

 

 

 

 

 

• Mean-Shift formulation for refinement 

 Scale-adaptive balloon density estimator 

Scale Voting: Efficient Computation 
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Implicit Shape Model - Recognition 

Backprojected 
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[Leibe04, Leibe08] 



K. Grauman, B. Leibe 

Original image 

Example: Results on Cows 



K. Grauman, B. Leibe 

Original image Interest points 

Example: Results on Cows 



K. Grauman, B. Leibe 

Original image Interest points Matched patches 

Example: Results on Cows 



K. Grauman, B. Leibe 

Original image Interest points Matched patches Prob. Votes 

Example: Results on Cows 



K. Grauman, B. Leibe 

1st hypothesis 

Example: Results on Cows 



K. Grauman, B. Leibe 

2nd hypothesis 

Example: Results on Cows 



K. Grauman, B. Leibe 

Example: Results on Cows 

3rd hypothesis 



ISM: Detection Results 

• Qualitative Performance 

– Robust to clutter, occlusion, noise, low contrast 

K. Grauman, B. Leibe 



Beyond bounding boxes 
 

  

 

 

 

Backprojected codewords can vote: 

• Pixel segmentation 

• Part layout 

• Pose 

• Depth values 

 

 

 

Backprojected 

Hypotheses 
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K. Grauman, B. Leibe 

Segmentation: Probabilistic Formulation 

• Influence of patch on object hypothesis (vote weight) 
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•  Backprojection to features f and pixels p: 

Segmentation 
information 

Influence on  
object hypothesis 

[Leibe04, Leibe08] 



K. Grauman, B. Leibe 

ISM – Top-Down Segmentation 

Backprojected 

Hypotheses 
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47 
K. Grauman, B. Leibe 

Example Results: Motorbikes 



48 
B. Leibe 

Example Results: Chairs 

Office chairs 

Dining room chairs 
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Inferring Other Information: Part Labels 

Training 

Test Output 

[Thomas07] 



50 

Inferring Other Information: Part Labels (2) 

[Thomas07] 



51 

Inferring Other Information: Depth Maps 

[Thomas07] 



2 minute break 

• Comparing a sliding window/part detector 

– What are the advantages of the part detector? 

– What are the advantages of the sliding window 
detector? 



Tree-shaped model 

 



Pictorial Structures Model 

Part = oriented rectangle Spatial model = relative size/orientation 

Felzenszwalb and Huttenlocher 2005 



Pictorial Structures Model 

Appearance likelihood Geometry likelihood 



Modeling the Appearance 

• Any appearance model could be used 

– HOG Templates, etc. 

– Here: rectangles fit to background subtracted binary map 

 

• Can train appearance models independently (easy, 
not as good) or jointly (more complicated but better) 

 

Appearance likelihood Geometry likelihood 



Part representation 

• Background subtraction 

 

 

 

 

 

 



Pictorial structures model 

Optimization is tricky but can be efficient 
 

 

 

• For each l1, find best l2: 

 
 

• Remove v2, and repeat with smaller tree, until 
only a single part 

• For k parts, n locations per part, this has complexity 
of O(kn2), but can be solved in ~O(nk) using 
generalized distance transform 

 



• For each pixel p, how far away is the nearest 
pixel q of set S 

–   

– G is often the set of edge pixels 

Distance Transform 

G: black pixels 

p1 

q1 

p2 

q2 



Distance Transform - Applications 

• Set distances – e.g. Hausdorff Distance 

• Image processing – e.g. Blurring 

• Robotics – Motion Planning 

• Alignment 

– Edge images 

– Motion tracks 

– Audio warping 

• Deformable Part Models  



Generalized Distance Transform 

• Original form:  

• General form: 

 

• For many deformation costs,  

 

  

Quadratic 

Abs Diff 

Min Composition 

Bounded 



Results for person matching 

 

65 



Results for person matching 

 

66 



Enhanced pictorial structures 

BMVC 2009 



Deformable Latent Parts Model 

Useful parts discovered during training 

Detections 

Template Visualization 

Felzenszwalb et al. 2008 



Things to remember 

• Rather than searching for whole 
object, can locate “parts” that 
vote for object 
– Better encoding of spatial 

variation 

 
• These parts can vote for other 

things too 
 

• Models can be broken down into 
part appearance and spatial 
configuration 
– Wide variety of models 

 

• Efficient optimization can be 
tricky but usually possible 



Next classes 

 

• Tues: Object tracking with Kalman Filters 

– Presented by Amin Sadeghi 

– HW 5 is due 

 

• Thurs: Action Recognition 

– Presented by me 

 

 


