04/12/12

Object Category Detection: Parts-based Models

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

Administrative stuff

- HW 5 due Tues
- I'm out of town Sun to Tues night
 Unresponsive on Monday
 - Amin Sadeghi will teach Tues
- Final project posters presented May 4 (1:30-4:30pm)
 - Final paper: due May 8

Goal: Detect all instances of objects

Cars

Faces

Cats

Last class: sliding window detection

Object model: last class

- Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Image

Template Visualization

Images from Felzenszwalb

Last class: statistical template

 Object model = log linear model of parts at fixed positions

When do statistical templates make sense?

Caltech 101 Average Object Images

Object models: this class

- Articulated parts model
 - Object is configuration of parts
 - Each part is detectable

Deformable objects

Images from Caltech-256

Deformable objects

Images from D. Ramanan's dataset

Slide Credit: Duan Tran

Compositional objects

Parts-based Models

Define object by collection of parts modeled by

- 1. Appearance
- 2. Spatial configuration

Slide credit: Rob Fergus

• One extreme: fixed template

• Another extreme: bag of words

• Star-shaped model

• Star-shaped model

Tree-shaped model

• Many others...

Csurka '04 Vasconcelos '00

- b) Star shape
- Leibe et al. '04, '08 Crandall et al. '05 Fergus et al. '05

Crandall et al. '05

Felzenszwalb & Huttenlocher '05

Bouchard & Triggs '05

g) Sparse flexible model

Carneiro & Lowe '06

from [Carneiro & Lowe, ECCV'06]

Today's class

- 1. Star-shaped model
 - Example: ISM
 - <u>Leibe et al. 2004, 2008</u>

- 2. Tree-shaped model
 - Example: Pictorial structures
 - Felzenszwalb Huttenlocher 2005

ISM: Implicit Shape Model

Training overview

- Start with bounding boxes and (ideally) segmentations of objects
- Extract local features (e.g., patches or SIFT) at interest points on objects
- Cluster features to create codebook
- Record relative bounding box and segmentation for each codeword

ISM: Implicit Shape Model

Testing overview

- Extract interest points in test image
- Softly match to codebook entries
- Each matched codeword votes for object bounding box
- Compute modes of votes using mean-shift
- Check which codewords voted for modes

Codebook Representation

- Extraction of local object features
 - Interest Points (e.g. Harris detector)
 - Sparse representation of the object appearance

- Collect features from whole training set
- Example:

Agglomerative Clustering

- Algorithm (Average-Link)
 - 1. Start with each patch as a cluster of its own
 - 2. Repeatedly merge the two most similar clusters X and Y, where the similarity between two clusters is defined as the average similarity between their members

$$sim(X,Y) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} sim(x^{(i)}, y^{(j)})$$

3. Until $sim(X,Y) < \theta$

- Commonly used similarity measures
 - Normalized correlation
 - > Euclidean distances

Appearance Codebook

• Clustering Results

- Visual similarity preserved
- > Wheel parts, window corners, fenders, ...
- > Store cluster centers as Appearance Codebook

Voting with Local Features

• For every feature, store possible "occurrences"

Record relative size and scale of object

• For new image, let the matched features vote for possible object positions

 $x_{vote} = x_{img} - x_{occ}(s_{img}/s_{occ})$ $y_{vote} = y_{img} - y_{occ}(s_{img}/s_{occ})$ $s_{vote} = (s_{img}/s_{occ}).$

K. Grauman, B. Leibe

Implicit Shape Model - Recognition

[Leibe04, Leibe08]

Scale Voting: Efficient Computation

- Mean-Shift formulation for refinement
 - Scale-adaptive balloon density estimator

$$\hat{p}(o_n, x) = \frac{1}{V_b} \sum_k \sum_j p(o_n, x_j | f_k, \ell_k) K(\frac{x - x_j}{b})$$

Implicit Shape Model - Recognition

Matched Codebook

[[]Leibe04, Leibe08]

Original image

Interest points

Matched patches

Prob. Votes

1st hypothesis

2nd hypothesis

3rd hypothesis

ISM: Detection Results

- Qualitative Performance
 - Robust to clutter, occlusion, noise, low contrast

Beyond bounding boxes

Backprojected codewords can vote:

- Pixel segmentation
- Part layout
- Pose
- Depth values

Segmentation: Probabilistic Formulation

• Influence of patch on object hypothesis (vote weight)

$$p(f,\ell|o_n,x) = \frac{\sum_i p(o_n,x|C_i)p(C_i|f)p(f,\ell)}{p(o_n,x)}$$

• Backprojection to features f and pixels p: $p(\mathbf{p} = figure \mid o_n, x) = \sum_{\mathbf{p} \in (f, \ell)} p(\mathbf{p} = figure \mid f, \ell, o_n, x) p(f, \ell \mid o_n, x)$ Segmentation Influence on object hypothesis

[Leibe04, Leibe08] K. Grauman, B. Leibe

ISM - Top-Down Segmentation

Example Results: Motorbikes

Example Results: Chairs

Dining room chairs

Office chairs

Inferring Other Information: Part Labels

Training

Test

Output

[Thomas07]

Inferring Other Information: Part Labels (2)

Inferring Other Information: Depth Maps

Test image

[Thomas07]

2 minute break

- Comparing a sliding window/part detector
 - What are the advantages of the part detector?
 - What are the advantages of the sliding window detector?

Tree-shaped model

Pictorial Structures Model

Felzenszwalb and Huttenlocher 2005

Pictorial Structures Model

$$P(L|I,\theta) \propto \left(\prod_{i=1}^{n} p(I|l_i, u_i) \prod_{(v_i, v_j) \in E} p(l_i, l_j | c_{ij})\right)$$

Appearance likelihood Geometry likelihood

Modeling the Appearance

- Any appearance model could be used
 - HOG Templates, etc.
 - Here: rectangles fit to background subtracted binary map
- Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

$$P(L|I,\theta) \propto \left(\prod_{i=1}^{n} p(I|l_{i}, u_{i}) \prod_{(v_{i}, v_{j}) \in E} p(l_{i}, l_{j}|c_{ij})\right)$$

Appearance likelihood Geometry likelihood

Part representation

Background subtraction

Pictorial structures model

Optimization is tricky but can be efficient

$$L^* = \arg\min_{L} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right) \xrightarrow{(\bullet)}_{\mathbb{Z}_{2} \cup \mathbb{Z}_{2}} v_l$$

 $Best_2(l_1) = \min_{l_2} \left[m_2(l_2) + d_{12}(l_1, l_2) \right]$

- Remove v₂, and repeat with smaller tree, until only a single part
- For k parts, n locations per part, this has complexity of O(kn²), but can be solved in ~O(nk) using generalized distance transform

Distance Transform

 For each pixel p, how far away is the nearest pixel q of set S

$$-f(p) = \min_{q \in G} d(p,q)$$

- G is often the set of edge pixels

Distance Transform - Applications

- Set distances e.g. Hausdorff Distance
- Image processing e.g. Blurring
- Robotics Motion Planning
- Alignment
 - Edge images
 - Motion tracks
 - Audio warping
- Deformable Part Models

Generalized Distance Transform

- Original form: $f(p) = \min_{q \in G} d(p,q)$
- General form: $f(p) = \min_{q \in [1,N]} m(q) + d(p,q)$
- For many deformation costs, $O(N^2) \rightarrow O(N)$ Quadratic $d(p,q) = \alpha(p-q)^2 + \beta(p-q)$ Abs Diff $d(p,q) = \alpha|p-q|$ Min Composition $d(p,q) = \min(d_1(p,q), d_2(p,q))$ Bounded $d_{\tau}(p,q) = \begin{cases} d(p,q) & : |p-q| < \tau \\ \infty & : |p-q| \ge \tau \end{cases}$

Results for person matching

Results for person matching

Enhanced pictorial structures

EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 9

BMVC 2009

Deformable Latent Parts Model

Useful parts discovered during training

Detections

Template Visualization

root filters coarse resolution

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

Things to remember

- Rather than searching for whole object, can locate "parts" that vote for object
 - Better encoding of spatial variation
- These parts can vote for other things too
- Models can be broken down into part appearance and spatial configuration
 - Wide variety of models
- Efficient optimization can be tricky but usually possible

Next classes

- Tues: Object tracking with Kalman Filters
 - Presented by Amin Sadeghi
 - HW 5 is due

- Thurs: Action Recognition
 - Presented by me