Object Category Detection: Sliding Windows

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Today's class: Object Category Detection

Overview of object category detection

- Statistical template matching with sliding window detector
 - Dalal-Triggs pedestrian detector
 - Viola-Jones face detector

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

Challenges in modeling the object class

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges in modeling the non-object class

True Detections

Bad Localization

Confused with Similar Object

Misc. Background

Confused with Dissimilar Objects

General Process of Object Recognition

- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Image

Template Visualization

2. Articulated parts model

- Object is configuration of parts
- Each part is detectable

3. Hybrid template/parts model

Detections

Template Visualization

root filters par

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation

General Process of Object Recognition

1. Sliding window

Test patch at each location and scale

1. Sliding window

Test patch at each location and scale

2. Voting from patches/keypoints

3. Region-based proposal

Endres Hoiem 2010

General Process of Object Recognition

General Process of Object Recognition

Resolving detection scores

1. Non-max suppression

Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local

Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image

Basic Steps of Category Detection

1. Align

- E.g., choose position, scale orientation
- How to make this tractable?

2. Compare

- Compute similarity to an example object or to a summary representation
- Which differences in appearance are important?

Sliding window: a simple alignment solution

Each window is separately classified

Statistical Template

 Object model = sum of scores of features at fixed positions

$$+3+2-2-1-2.5 = -0.5 > 7.5$$
Non-object

$$+4+1+0.5+3+0.5=10.5 \stackrel{?}{>} 7.5$$
Object

Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales
- Feature design and scoring
 - How should appearance be modeled? What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression

Example: Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Person/

 non-person classification

Linear

SVM

- Tested with
 - RGBSlightly better performance vs. grayscale
 - Grayscale
- Gamma Normalization and Compression
 - Square root
 Very slightly better performance vs. no adjustment
 - Log

Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in 8x8 pixel cells

- Votes weighted by magnitude
- Bilinear interpolation between cells

R-HOG

Cell

Normalize with respect to surrounding cells

$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2+\epsilon^2}$$

orientations

features = 15 x 7 x 9 x 4 = 3780

cells # normalizations by neighboring cells

$$0.16 = w^T x - b$$

$$sign(0.16) = 1$$

Detection examples

2 minute break

Something to think about...

- Sliding window detectors work
 - very well for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs
- Why are some classes easier than others?

Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

Cascade for Fast Detection

- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window

Integral Images

• ii = cumsum(cumsum(im, 1), 2)

ii(x,y) = Sum of the values in the grey region

How to compute B-A?

How to compute A+D-B-C?

Feature selection with Adaboost

- Create a large pool of features (180K)
- Select features that are discriminative and work well together
 - "Weak learner" = feature + threshold + parity

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Choose weak learner that minimizes error on the weighted training set
- Reweight

Adaboost

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

Top 2 selected features

Viola-Jones details

- 38 stages with 1, 10, 25, 50 ... features
 - 6061 total used out of 180K candidates
 - 10 features evaluated on average
- Training Examples
 - 4916 positive examples
 - 10000 negative examples collected after each stage
- Scanning
 - Scale detector rather than image
 - Scale steps = 1.25 (factor between two consecutive scales)
 - Translation 1*scale (# pixels between two consecutive windows)
- Non-max suppression: average coordinates of overlapping boxes
- Train 3 classifiers and take vote

Viola Jones Results

Speed = 15 FPS (in 2001)

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

MIT + CMU face dataset

Strengths and Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects: faces, cars, upright pedestrians
- Fast detection

Weaknesses

- Not so well for highly deformable objects
- Not robust to occlusion
- Requires lots of training data

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate
- Template size
 - Typical choice is size of smallest detectable object
- "Jittering" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - Train detector
 - 3. Sample negative examples that score > -1
 - Repeat until all high-scoring negative examples fit in memory

Consumer application: iPhoto 2009

Things iPhoto thinks are faces

Influential Works in Detection

- Sung-Poggio (1994, 1998): ~1750 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~3400
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004): ~1700
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~11,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005): ~3250
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~1000
 - Efficient way to solve part-based detectors
- Felzenszwalb-McAllester-Ramanan (2008)? ~800
 - Excellent template/parts-based blend

Things to remember

- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
 - Excellent results require careful feature design
- Boosting for feature selection
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples

Next class

Deformable parts models and the distance transform

