Grouping and Segmentation

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Announcements

- HW 3: due today
 - Graded by Tues after spring break

- HW 4: out soon
 - 1. Mean-shift segmentation
 - 2. EM problem for dealing with bad annotators
 - 3. Graph cuts segmentation

Today's class

- Segmentation and grouping
 - Gestalt cues
 - By clustering (mean-shift)
 - By boundaries (watershed)

Gestalt grouping

Gestalt psychology or gestaltism

German: Gestalt - "form" or "whole"

Berlin School, early 20th century

Kurt Koffka, Max Wertheimer, and Wolfgang Köhler

View of brain:

- whole is more than the sum of its parts
- holistic
- parallel
- analog
- self-organizing tendencies

Gestaltism

The Muller-Lyer illusion

We perceive the interpretation, not the senses

Principles of perceptual organization

Principles of perceptual organization

Gestaltists do not believe in coincidence

Emergence

Grouping by invisible completion

Grouping involves global interpretation

Grouping involves global interpretation

Gestalt cues

Good intuition and basic principles for grouping

Basis for many ideas in segmentation and occlusion reasoning

 Some (e.g., symmetry) are difficult to implement in practice

Image segmentation

Goal: Group pixels into meaningful or perceptually similar regions

Segmentation for feature support

Segmentation for efficiency

[Felzenszwalb and Huttenlocher 2004]

[Shi and Malik 2001]

[Hoiem et al. 2005, Mori 2005]

Segmentation as a result

Types of segmentations

Oversegmentation

Undersegmentation

Multiple Segmentations

Major processes for segmentation

- Bottom-up: group tokens with similar features
- Top-down: group tokens that likely belong to the same object

Segmentation using clustering

Kmeans

Mean-shift

Feature Space

K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

K-Means pros and cons

- Pros
 - Simple and fast
 - Easy to implement
- Cons
 - Need to choose K
 - Sensitive to outliers

- Usage
 - Rarely used for pixel segmentation

Mean shift segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Versatile technique for clustering-based segmentation

Mean shift algorithm

Try to find modes of this non-parametric

density

Kernel density estimation

Kernel density estimation

Kernel density estimation function

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

Gaussian kernel

$$K\left(\frac{x-x_i}{h}\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}.$$

Computing the Mean Shift

Simple Mean Shift procedure:

- Compute mean shift vector
- Translate the Kernel window by m(x)

Real Modality Analysis

Attraction basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Attraction basin

Mean shift clustering

- The mean shift algorithm seeks modes of the given set of points
 - 1. Choose kernel and bandwidth
 - 2. For each point:
 - a) Center a window on that point
 - b) Compute the mean of the data in the search window
 - c) Center the search window at the new mean location
 - d) Repeat (b,c) until convergence
 - 3. Assign points that lead to nearby modes to the same cluster

Segmentation by Mean Shift

- Compute features for each pixel (color, gradients, texture, etc); also store each pixel's position
- Set kernel size for features K_f and position K_s
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge modes that are within width of K_f and K_s

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean-shift: other issues

Speedups

- Binned estimation replace points within some "bin" by point at center with mass
- Fast search of neighbors e.g., k-d tree or approximate NN
- Update all windows in each iteration (faster convergence)

Other tricks

Use kNN to determine window sizes adaptively

Lots of theoretical support

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Doing mean-shift for HW 4

- Goal is to understand the basics of how meanshift works
 - Just get something working that has the right behavior qualitatively
 - Don't worry about speed
- Simplifications
 - Work with very small images (120x80)
 - Use a uniform kernel (compute the mean of color, position within some neighborhood given by K_f and K_s)
 - Can use a heuristic for merging similar modes

Mean shift pros and cons

Pros

- Good general-purpose segmentation
- Flexible in number and shape of regions
- Robust to outliers

Cons

- Have to choose kernel size in advance
- Not suitable for high-dimensional features
- When to use it
 - Oversegmentation
 - Multiple segmentations
 - Tracking, clustering, filtering applications
 - D. Comaniciu, V. Ramesh, P. Meer: <u>Real-Time Tracking of Non-Rigid Objects using Mean Shift</u>, Best Paper Award, IEEE Conf. Computer Vision and Pattern Recognition (CVPR'00), Hilton Head Island, South Carolina, Vol. 2, 142-149, 2000

Watershed algorithm

Watershed segmentation

200

Meyer's watershed segmentation

- 1. Choose local minima as region seeds
- 2. Add neighbors to priority queue, sorted by value
- 3. Take top priority pixel from queue
 - 1. If all labeled neighbors have same label, assign that label to pixel
 - 2. Add all non-marked neighbors to queue
- 4. Repeat step 3 until finished (all remaining pixels in queue are on the boundary)

Matlab: seg = watershed(bnd_im)

Simple trick

Use Gaussian or median filter to reduce number of

regions

Watershed usage

- Use as a starting point for hierarchical segmentation
 - Ultrametric contour map (Arbelaez 2006)

- Works with any soft boundaries
 - Pb (w/o non-max suppression)
 - Canny (w/o non-max suppression)
 - Etc.

Watershed pros and cons

- Pros
 - Fast (< 1 sec for 512x512 image)
 - Preserves boundaries
- Cons
 - Only as good as the soft boundaries
 - Not easy to get variety of regions for multiple segmentations

- Usage
 - Preferred algorithm for hierarchical segmentation

Choices in segmentation algorithms

- Oversegmentation
 - Watershed + Pb ← my favorite
 - Felzenszwalb and Huttenlocher 2004 ← my favorite
 http://www.cs.brown.edu/~pff/segment/
 - Turbopixels
 - Mean-shift
- Larger regions
 - Hierarchical segmentation (e.g., from Pb) ← my favorite
 - Normalized cuts
 - Mean-shift
 - Seed + graph cuts (discussed later)

Felzenszwalb and Huttenlocher: Graph-Based Segmentation

http://www.cs.brown.edu/~pff/segment/

- + Fast
- + Easy to control coarseness of segmentations
- + Can include both large and small regions
- Often creates regions with strange shapes
- Sometimes makes very large errors

Turbo Pixels: Levinstein et al. 2009

http://www.cs.toronto.edu/~kyros/pubs/09.pami.turbopixels.pdf

Tries to preserve boundaries like watershed but to produce more regular regions

Things to remember

- Gestalt cues and principles of organization
- Uses of segmentation
 - Efficiency
 - Better features
 - Want the segmented object
- Mean-shift segmentation
 - Good general-purpose segmentation method
 - Generally useful clustering, tracking technique
- Watershed segmentation
 - Good for hierarchical segmentation
 - Use in combination with boundary prediction

Further reading

Nicely written mean-shift explanation (with math)

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

- Includes .m code for mean-shift clustering --- feel free to look at it but your code for segmentation will be different
- Mean-shift paper by Comaniciu and Meer http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

Adaptive mean shift in higher dimensions
 <u>http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf</u>

Contours to regions (watershed): Arbelaez et al. 2009

http://www.eecs.berkeley.edu/~arbelaez/publications/Arbelaez Maire Fowlkes Malik CVPR2009.pdf

Next class: EM algorithm

 Make sure to bring something to take notes (will include a long derivation)