
Structure from Motion

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem

03/06/12

Many slides adapted from Lana Lazebnik, Silvio Saverese, Steve Seitz, Martial Hebert

This class: structure from motion

• Recap of epipolar geometry

– Depth from two views

• Projective structure from motion

• Affine structure from motion

Recap: Epipoles

C

• Point x in left image corresponds to epipolar line l’ in right
image

• Epipolar line passes through the epipole (the intersection of
the cameras’ baseline with the image plane

C

Recap: Fundamental Matrix

• Fundamental matrix maps from a point in one
image to a line in the other

• If x and x’ correspond to the same 3d point X:

Recap: Automatic Estimation of F

8-Point Algorithm for Recovering F

• Correspondence Relation

1. Normalize image coordinates

2. RANSAC with 8 points
– Randomly sample 8 points

– Compute F via least squares

– Enforce by SVD

– Repeat and choose F with most inliers

3. De-normalize:

Assume we have matched points x x’ with outliers

Txx ~ xTx ~

TFTF
~T

  0
~

det F

0 Fxx
T

Recap

• We can get projection matrices P and P’ up to a
projective ambiguity (see HZ p. 255-256)

• Code:
 function P = vgg_P_from_F(F)

 [U,S,V] = svd(F);

 e = U(:,3);

 P = [-vgg_contreps(e)*F e];

 0IP |   e|FeP   0 Fe
T

See HZ p. 255-256

http://www.robots.ox.ac.uk/~vgg/hzbook/code/

Triangulation: Linear Solution

• Generally, rays Cx
and C’x’ will not
exactly intersect

• Can solve via SVD,
finding a least squares
solution to a system of
equations

X

x x'

XPx PXx 

0AX 





























TT

TT

TT

TT

v

u

v

u

23

13

23

13

pp

pp

pp

pp

A

Further reading: HZ p. 312-313

Triangulation: Linear Solution

Given P, P’, x, x’
1. Precondition points and projection

matrices
2. Create matrix A
3. [U, S, V] = svd(A)
4. X = V(:, end)

Pros and Cons
• Works for any number of

corresponding images
• Not projectively invariant



















1

v

u

wx























1

v

u

wx


















T

T

T

3

2

1

p

p

p

P





























TT

TT

TT

TT

v

u

v

u

23

13

23

13

pp

pp

pp

pp

A
























T

T

T

3

2

1

p

p

p

P

Code: http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m

http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m

Triangulation: Non-linear Solution

• Minimize projected error while satisfying

Figure source: Robertson and Cipolla (Chpt 13 of Practical Image Processing and Computer Vision)

𝒙 ′

𝒙′

𝒙

𝒙

𝑐𝑜𝑠𝑡 𝑿 = 𝑑𝑖𝑠𝑡 𝒙, 𝒙 2 + 𝑑𝑖𝑠𝑡 𝒙′, 𝒙 ′ 2

𝒙 ′
𝑇
𝑭𝒙 =0

Triangulation: Non-linear Solution

• Minimize projected error while satisfying

• Solution is a 6-degree polynomial of t,
minimizing

Further reading: HZ p. 318

𝒙 ′
𝑇
𝑭𝒙 =0

𝑐𝑜𝑠𝑡 𝑿 = 𝑑𝑖𝑠𝑡 𝒙, 𝒙 2 + 𝑑𝑖𝑠𝑡 𝒙′, 𝒙 ′ 2

Projective structure from motion

• Given: m images of n fixed 3D points

• xij = Pi Xj , i = 1,… , m, j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D points
Xj from the mn corresponding 2D points xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slides from Lana Lazebnik

Projective structure from motion
• Given: m images of n fixed 3D points

• xij = Pi Xj , i = 1,… , m, j = 1, … , n

• Problem: estimate m projection matrices Pi
and n 3D points Xj from the mn corresponding
points xij

• With no calibration info, cameras and points
can only be recovered up to a 4x4 projective
transformation Q:

• X → QX, P → PQ-1
• We can solve for structure and motion when

• 2mn >= 11m +3n – 15
• For two cameras, at least 7 points are needed

Sequential structure from motion
•Initialize motion from two images
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

– Determine projection matrix of
new camera using all the known
3D points that are visible in its
image – calibration c

a
m

e
ra

s

points

Sequential structure from motion
•Initialize motion from two images
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

– Determine projection matrix of
new camera using all the known
3D points that are visible in its
image – calibration

– Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera –
triangulation

c
a

m
e

ra
s

points

Sequential structure from motion
•Initialize motion from two images
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

– Determine projection matrix of
new camera using all the known
3D points that are visible in its
image – calibration

– Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera –
triangulation

•Refine structure and motion: bundle
adjustment

c
a

m
e

ra
s

points

Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error

 
2

1 1

,),(
 


m

i

n

j

jiijDE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj

P3Xj

Auto-calibration

• Auto-calibration: determining intrinsic camera
parameters directly from uncalibrated images

• For example, we can use the constraint that a
moving camera has a fixed intrinsic matrix
– Compute initial projective reconstruction and find 3D

projective transformation matrix Q such that all
camera matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration
matrix, such as zero skew

Summary so far

• From two images, we can:
– Recover fundamental matrix F
– Recover canonical cameras P and P’ from F
– Estimate 3D positions (if K is known) that correspond

to each pixel

• For a moving camera, we can:

– Initialize by computing F, P, X for two images
– Sequentially add new images, computing new P,

refining X, and adding points
– Auto-calibrate assuming fixed calibration matrix to

upgrade to similarity transform

Photo synth

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring

photo collections in 3D," SIGGRAPH 2006

http://photosynth.net/

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://photosynth.net/

3D from multiple images

Building Rome in a Day: Agarwal et al. 2009

Structure from motion under orthographic projection

3D Reconstruction of a Rotating Ping-Pong Ball

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

•Reasonable choice when
•Change in depth of points in scene is much smaller than distance to camera
•Cameras do not move towards or away from the scene

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Orthographic projection for
rotated/translated camera

x

X
a1

a2

Affine structure from motion

• Affine projection is a linear mapping + translation in
inhomogeneous coordinates

1. We are given corresponding 2D points (x) in several frames

2. We want to estimate the 3D points (X) and the affine
parameters of each camera (A)

x

X
a1

a2

tAXx 

















































y

x

t

t

Z

Y

X

aaa

aaa

y

x

232221

131211

Projection of

world origin

Step 1: Simplify by getting rid of t: shift to centroid of
points for each camera





n

k

ikijij
n 1

1
ˆ xxxiii tXAx 

  ji

n

k

kji

n

k

ikiiji

n

k

ikij
nnn

XAXXAtXAtXAxx ˆ111

111









 



jiij XAx ˆˆ 

2d normalized point

(observed)

3d normalized point

Linear (affine) mapping

Suppose we know 3D points and affine
camera parameters …

 then, we can compute the observed 2d
positions of each point

 







































mnmm

n

n

n

m xxx

xxx

xxx

XXX

A

A

A

ˆˆˆ

ˆˆˆ

ˆˆˆ

21

22221

11211

21

2

1












Camera Parameters (2mx3)

3D Points (3xn)

2D Image Points (2mxn)

What if we instead observe corresponding
2d image points?

Can we recover the camera parameters and 3d
points?

cameras (2 m)

points (n)

 n

mmnmm

n

n

XXX

A

A

A

xxx

xxx

xxx

D 










21

2

1

21

22221

11211

?

ˆˆˆ

ˆˆˆ

ˆˆˆ









































What rank is the matrix of 2D points?

Factorizing the measurement matrix

Source: M. Hebert

AX

Factorizing the measurement matrix

Source: M. Hebert

• Singular value decomposition of D:

Factorizing the measurement matrix

Source: M. Hebert

• Singular value decomposition of D:

Factorizing the measurement matrix

Source: M. Hebert

• Obtaining a factorization from SVD:

Factorizing the measurement matrix

Source: M. Hebert

• Obtaining a factorization from SVD:

A
~

X
~

Affine ambiguity

• The decomposition is not unique. We get the
same D by using any 3×3 matrix C and applying
the transformations A → AC, X →C-1X

• That is because we have only an affine
transformation and we have not enforced any
Euclidean constraints (like forcing the image
axes to be perpendicular, for example)

Source: M. Hebert

S
~

A
~

X
~

• Orthographic: image axes are perpendicular
and of unit length

Eliminating the affine ambiguity

x

X
a1

a2

a1 · a2 = 0

|a1|
2 = |a2|

2
 = 1

Source: M. Hebert

Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition:
L = CCT

• Update A and X: A = AC, X = C-1X











T

i

T

i

i

2

1

~

~
~

a

a
Awhere

1~~
11 i

TT

i aCCa

1~~
22 i

TT

i aCCa

0~~
21 i

TT

i aCCa

~ ~

Three equations for each image i

Algorithm summary
• Given: m images and n tracked features xij

• For each image i, center the feature coordinates
• Construct a 2m × n measurement matrix D:

– Column j contains the projection of point j in all views
– Row i contains one coordinate of the projections of all

the n points in image i

• Factorize D:
– Compute SVD: D = U W VT

– Create U3 by taking the first 3 columns of U
– Create V3 by taking the first 3 columns of V
– Create W3 by taking the upper left 3 × 3 block of W

• Create the motion (affine) and shape (3D) matrices:
 A = U3W3

½ and X = W3
½ V3

T

• Eliminate affine ambiguity

Source: M. Hebert

Dealing with missing data

• So far, we have assumed that all points are
visible in all views

• In reality, the measurement matrix typically
looks something like this:

One solution:
– solve using a dense submatrix of visible points

– Iteratively add new cameras

cameras

points

Reconstruction results (your HW 3.4)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Further reading

• Short explanation of Affine SfM: class notes
from Lischinksi and Gruber

 http://www.cs.huji.ac.il/~csip/sfm.pdf

• Clear explanation of epipolar geometry and
projective SfM
– http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBo

ok/2008-SFM-chapters.pdf

http://www.cs.huji.ac.il/~csip/sfm.pdf
http://www.cs.huji.ac.il/~csip/sfm.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf

Review of Affine SfM from Interest Points

1. Detect interest points (e.g., Harris)














)()(

)()(
)(),(

2

2

DyDyx

DyxDx

IDI
III

III
g






43

1. Image

derivatives

2. Square of

derivatives

3. Gaussian

 filter g(I)

Ix Iy

Ix
2 Iy

2 IxIy

g(Ix
2) g(Iy

2) g(IxIy)

222222)]()([)]([)()(yxyxyx IgIgIIgIgIg  

])),([trace()],(det[2

DIDIhar 

4. Cornerness function – both eigenvalues are strong

har 5. Non-maxima suppression

1 2

1 2

det

trace

M

M

 

 



 

Review of Affine SfM from Interest Points

2. Correspondence via Lucas-Kanade tracking

a) Initialize (x’,y’) = (x,y)

b) Compute (u,v) by

c) Shift window by (u, v): x’=x’+u; y’=y’+v;

d) Recalculate It

e) Repeat steps 2-4 until small change

• Use interpolation for subpixel values

2nd moment matrix for feature

patch in first image
displacement

It = I(x’, y’, t+1) - I(x, y, t)

Original (x,y) position

Review of Affine SfM from Interest Points

3. Get Affine camera matrix and 3D points using
Tomasi-Kanade factorization

Solve for

orthographic

constraints

Tips for HW 3

• Problem 1: vanishing points
– Use lots of lines to estimate vanishing points
– For estimation of VP from lots of lines, see single-view

geometry chapter, or use robust estimator of a central
intersection point

– For obtaining intrinsic camera matrix, numerical solver
(e.g., fsolve in matlab) may be helpful

• Problem 3: epipolar geometry
– Use reprojection distance for inlier check (make sure to

compute line to point distance correctly)

• Problem 4: structure from motion
– Use Matlab’s chol and svd
– If you weren’t able to get tracking to work from HW2 can

use provided points

Distance of point to epipolar line

x .
x‘=[u v 1]

.

l=Fx=[a b c]

𝑑 𝑙, 𝑥′ =
|𝑎𝑢 + 𝑏𝑣 + 𝑐|

𝑎2 + 𝑏2

Next class

• Clustering and using clustered interest points
for matching images in a large database

