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This class: structure from motion 

 

• Recap of epipolar geometry 

– Depth from two views 

 

• Projective structure from motion 

 

• Affine structure from motion 



Recap: Epipoles 

C

• Point x in left image corresponds to epipolar line l’ in right 
image 

• Epipolar line passes through the epipole (the intersection of 
the cameras’ baseline with the image plane 

C



Recap: Fundamental Matrix 

• Fundamental matrix maps from a point in one 
image to a line in the other 

 

• If x and x’ correspond to the same 3d point X: 



Recap: Automatic Estimation of F 

8-Point Algorithm for Recovering F 

• Correspondence Relation 

 

1. Normalize image coordinates 

 

2. RANSAC with 8 points 
– Randomly sample 8 points 

– Compute F via least squares 

– Enforce     by SVD 

– Repeat and choose F with most inliers 

3. De-normalize: 

 

 

 

Assume we have matched points x   x’ with outliers 

Txx ~ xTx ~

TFTF
~T

  0
~

det F

0 Fxx
T



Recap 

• We can get projection matrices P and P’ up to a 
projective ambiguity (see HZ p. 255-256) 
 
 
 
 
 

• Code: 
 function P = vgg_P_from_F(F) 

 [U,S,V] = svd(F); 

 e = U(:,3); 

 P = [-vgg_contreps(e)*F e]; 

 

 0IP |   e|FeP   0 Fe
T

See HZ p. 255-256 

http://www.robots.ox.ac.uk/~vgg/hzbook/code/


Triangulation: Linear Solution 

 

• Generally, rays Cx 
and C’x’ will not 
exactly intersect 

• Can solve via SVD, 
finding a least squares 
solution to a system of 
equations 
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Further reading: HZ p. 312-313 



Triangulation: Linear Solution 

Given P, P’, x, x’ 
1. Precondition points and projection 

matrices 
2. Create matrix A 
3. [U, S, V] = svd(A) 
4.  X = V(:, end) 

 
Pros and Cons 
• Works for any number of 

corresponding images 
• Not projectively invariant  
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Code: http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m 

http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m


Triangulation: Non-linear Solution 

• Minimize projected error while satisfying 

 

 

 

 

 

Figure source: Robertson and Cipolla (Chpt 13 of Practical Image Processing and Computer Vision)  
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Triangulation: Non-linear Solution 

• Minimize projected error while satisfying 

 

 

 

 

 

 

• Solution is a 6-degree polynomial of t, 
minimizing  

 
Further reading: HZ p. 318 
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𝑐𝑜𝑠𝑡 𝑿 = 𝑑𝑖𝑠𝑡 𝒙, 𝒙 2 + 𝑑𝑖𝑠𝑡 𝒙′, 𝒙 ′ 2 



Projective structure from motion 

• Given: m images of n fixed 3D points  
 

• xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and n 3D points 
Xj from the mn corresponding 2D points xij 

 

x1j 
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Xj 

P1 
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P3 

Slides from Lana Lazebnik  



Projective structure from motion 
• Given: m images of n fixed 3D points  

 

• xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi 
and n 3D points Xj from the mn corresponding 
points xij 

• With no calibration info, cameras and points 
can only be recovered up to a 4x4 projective 
transformation Q: 

• X → QX, P → PQ-1 
• We can solve for structure and motion when  

• 2mn >= 11m +3n – 15 
• For two cameras, at least 7 points are needed 

 



Sequential structure from motion 
•Initialize motion from two images 
using fundamental matrix 
 

•Initialize structure by triangulation 
 

•For each additional view: 

– Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  c

a
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Sequential structure from motion 
•Initialize motion from two images 
using fundamental matrix 
 

•Initialize structure by triangulation 
 

•For each additional view: 

– Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  
 

– Refine and extend structure: 
compute new 3D points,  
re-optimize existing points that   
are also seen by this camera – 
triangulation  
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Sequential structure from motion 
•Initialize motion from two images 
using fundamental matrix 
 

•Initialize structure by triangulation 
 

•For each additional view: 

– Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  
 

– Refine and extend structure: 
compute new 3D points,               
re-optimize existing points that 
are also seen by this camera – 
triangulation  
 

•Refine structure and motion: bundle 
adjustment 
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Bundle adjustment 

• Non-linear method for refining structure and motion 

• Minimizing reprojection error 
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Auto-calibration 

• Auto-calibration: determining intrinsic camera 
parameters directly from uncalibrated images 

 

• For example, we can use the constraint that a 
moving camera has a fixed intrinsic matrix 
– Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all 
camera matrices are in the form Pi = K [Ri | ti] 

 

• Can use constraints on the form of the calibration 
matrix, such as zero skew 



Summary so far 

• From two images, we can: 
– Recover fundamental matrix F 
– Recover canonical cameras P and P’ from F 
– Estimate 3D positions (if K is known) that correspond 

to each pixel 

 
• For a moving camera, we can: 

– Initialize by computing F, P, X for two images 
– Sequentially add new images, computing new P, 

refining X, and adding points 
– Auto-calibrate assuming fixed calibration matrix to 

upgrade to similarity transform 
 



Photo synth 

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring 

photo collections in 3D," SIGGRAPH 2006 

http://photosynth.net/ 

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://photosynth.net/


3D from multiple images 

Building Rome in a Day: Agarwal et al. 2009 



Structure from motion under orthographic projection 

3D Reconstruction of a Rotating Ping-Pong Ball 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

•Reasonable choice when  
•Change in depth of points in scene is much smaller than distance to camera 
•Cameras do not move towards or away from the scene   

 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Orthographic projection for 
rotated/translated camera 

x 

X 
a1 

a2 



Affine structure from motion 
 

• Affine projection is a linear mapping + translation in 
inhomogeneous coordinates 

 

 

 

 

 

 

1. We are given corresponding 2D points (x) in several frames 

2. We want to estimate the 3D points (X) and the affine 
parameters of each camera (A) 
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Step 1: Simplify by getting rid of t: shift to centroid of 
points for each camera 
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Suppose we know 3D points and affine 
camera parameters … 

 then, we can compute the observed 2d 
positions of each point 
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What if we instead observe corresponding 
2d image points? 
 

Can we recover the camera parameters and 3d 
points? 

cameras (2 m) 

points (n) 
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Factorizing the measurement matrix 

Source: M. Hebert 

AX 



Factorizing the measurement matrix 

Source: M. Hebert 

• Singular value decomposition of D: 



Factorizing the measurement matrix 

Source: M. Hebert 

• Singular value decomposition of D: 



Factorizing the measurement matrix 

Source: M. Hebert 

• Obtaining a factorization from SVD: 



Factorizing the measurement matrix 

Source: M. Hebert 

• Obtaining a factorization from SVD: 

A
~

X
~



Affine ambiguity 

• The decomposition is not unique. We get the 
same D by using any 3×3 matrix C and applying 
the transformations A → AC, X →C-1X 

• That is because we have only an affine 
transformation and we have not enforced any 
Euclidean constraints (like forcing the image 
axes to be perpendicular, for example) 

Source: M. Hebert 

S
~

A
~

X
~



• Orthographic: image axes are perpendicular 
and of unit length 
 
 
 
 
 
 
 
 

Eliminating the affine ambiguity 

x 

X 
a1 

a2 

a1 · a2 = 0 

|a1|
2 = |a2|

2
 = 1 

Source: M. Hebert 



Solve for orthographic constraints 

 

 

 

 

 

• Solve for L = CCT 

• Recover C from L by Cholesky decomposition: 
L = CCT 

• Update A and X:  A = AC, X = C-1X 
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Algorithm summary 
• Given: m images and n tracked features xij 

• For each image i, center the feature coordinates 
• Construct a 2m × n measurement matrix D: 

– Column j contains the projection of point j in all views 
– Row i contains one coordinate of the projections of all 

the n points in image i 

• Factorize D: 
– Compute SVD: D = U W VT 

– Create U3 by taking the first 3 columns of U 
– Create V3 by taking the first 3 columns of V 
– Create W3 by taking the upper left 3 × 3 block of W 

• Create the motion (affine) and shape (3D) matrices: 
 A = U3W3

½  and X = W3
½ V3

T 

• Eliminate affine ambiguity 

Source: M. Hebert 



Dealing with missing data 

• So far, we have assumed that all points are 
visible in all views 

• In reality, the measurement matrix typically 
looks something like this: 

 

 

 
 
 
One solution: 
– solve using a dense submatrix of visible points 

– Iteratively add new cameras 

cameras 

points 



Reconstruction results (your HW 3.4) 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Further reading 

• Short explanation of Affine SfM: class notes 
from Lischinksi and Gruber 

 http://www.cs.huji.ac.il/~csip/sfm.pdf 

 

• Clear explanation of epipolar geometry and 
projective SfM 
– http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBo

ok/2008-SFM-chapters.pdf 

 

http://www.cs.huji.ac.il/~csip/sfm.pdf
http://www.cs.huji.ac.il/~csip/sfm.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf


Review of Affine SfM from Interest Points 

1. Detect interest points (e.g., Harris) 
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Review of Affine SfM from Interest Points 

2.  Correspondence via Lucas-Kanade tracking 

a) Initialize (x’,y’) = (x,y) 

b) Compute (u,v) by 

 

 

 

 

c) Shift window by (u, v): x’=x’+u; y’=y’+v; 

d) Recalculate It 

e) Repeat steps 2-4 until small change 

• Use interpolation for subpixel values 

 

2nd moment matrix for feature 

patch in first image 
displacement 

It = I(x’, y’, t+1) - I(x, y, t)  

Original (x,y) position 



Review of Affine SfM from Interest Points 

3.  Get Affine camera matrix and 3D points using 
Tomasi-Kanade factorization 

Solve for 

orthographic 

constraints  



Tips for HW 3 

• Problem 1: vanishing points 
– Use lots of lines to estimate vanishing points 
– For estimation of VP from lots of lines, see single-view 

geometry chapter, or use robust estimator of a central 
intersection point 

– For obtaining intrinsic camera matrix, numerical solver 
(e.g., fsolve in matlab) may be helpful 

• Problem 3: epipolar geometry 
– Use reprojection distance for inlier check (make sure to 

compute line to point distance correctly) 

• Problem 4: structure from motion 
– Use Matlab’s chol and svd 
– If you weren’t able to get tracking to work from HW2 can 

use provided points 



Distance of point to epipolar line 

x . 
x‘=[u v 1] 

. 

l=Fx=[a b c] 

𝑑 𝑙, 𝑥′ =
|𝑎𝑢 + 𝑏𝑣 + 𝑐|

𝑎2 + 𝑏2
  



Next class 

 

• Clustering and using clustered interest points 
for matching images in a large database 


