
Alignment and Object
Instance Recognition

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem

02/16/12

Today’s class

• Alignment (continued)

• Object instance recognition

• Example of alignment-based category
recognition

Line Fitting Demo

Alignment

• Alignment: find parameters of model that maps
one set of points to another

• Typically want to solve for a global transformation
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%)

– Many-to-one matches or multiple objects

Parametric (global) warping

 Transformation T is a coordinate-changing machine:
 p’ = T(p)

 What does it mean that T is global?

– Is the same for any point p
– can be described by just a few numbers (parameters)

 For linear transformations, we can represent T as a matrix
 p’ = Tp

T

p = (x,y) p’ = (x’,y’)

y

x

y

x
T

'

'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides):

A. Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X 2,

Y 0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx

'

'

y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation

(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation

Polar coordinates…

x = r cos (f)

y = r sin (f)

x’ = r cos (f +)

y’ = r sin (f +)

Trig Identity…

x’ = r cos(f) cos() – r sin(f) sin()

y’ = r sin(f) cos() + r cos(f) sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()

(x, y)

(x’, y’)

f

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

y

x

y

x

cossin

sincos

'

'

T
RR 1

R

Basic 2D transformations

Translate Rotate

Shear Scale

y

x

y

x

y

x

1

1

'

'

y

x

y

x

cossin

sincos

'

'

y

x

s

s

y

x

y

x

0

0

'

'

1
10

01
y

x

t

t

y

x

y

x

1

y

x

fed

cba

y

x

Affine

Affine is any combination of

translation, scale, rotation,

shear

Affine Transformations

Affine transformations are combinations of

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

1

y

x

fed

cba

y

x

11001

'

'

y

x

fed

cba

y

x

or

Projective Transformations

w

y
x

ihg

fed
cba

w

y
x

'

'
'Projective transformations are combos of

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)

2D image transformations (reference table)

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object

y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution

y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or

eigenvalue decomposition

A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t

11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution

y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution

y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence

y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

What if you want to align but have no prior
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain

scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

 Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means

and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence

y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence

Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖
 find corresponding

match(i) = argmin
𝑗

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q

Algorithm Summary
• Least Squares Fit

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences

Object Instance Recognition

1. Match keypoints to
object model

2. Solve for affine
transformation
parameters

3. Score by inliers and
choose solutions with
score above threshold

A1

A2
A3

Affine
Parameters

Choose hypothesis with max

score above threshold

Inliers

Matched

keypoints

This

Class

Overview of Keypoint Matching

K. Grauman, B. Leibe

N
 p

ix
e

ls

N pixels

Af

e.g. color

Bf

e.g. color

A1

A2 A3

Tffd BA),(

1. Find a set of

 distinctive key-

 points

3. Extract and

 normalize the

 region content

2. Define a region

 around each

 keypoint

4. Compute a local

 descriptor from the

 normalized region

5. Match local

 descriptors

Finding the objects (overview)

1. Match interest points from input image to database image

2. Matched points vote for rough position/orientation/scale of
object

3. Find position/orientation/scales that have at least three votes

4. Compute affine registration and matches using iterative least
squares with outlier check

5. Report object if there are at least T matched points

Input

Image Stored

Image

Matching Keypoints

• Want to match keypoints between:

1. Query image

2. Stored image containing the object

• Given descriptor x0, find two nearest
neighbors x1, x2 with distances d1, d2

• x1 matches x0 if d1/d2 < 0.8

– This gets rid of 90% false matches, 5% of true
matches in Lowe’s study

Affine Object Model

• Accounts for 3D rotation of a surface under
orthographic projection

Affine Object Model

• Accounts for 3D rotation of a surface under
orthographic projection

What is the minimum number of matched points that we need?

1

y

x

fed

cba

y

x

2

1

1

22

11

11

.

0001

1000

0001

x

y

x

f

e

d

c

b

a

yx

yx

yx

Finding the objects (in detail)
1. Match interest points from input image to database image

2. Get location/scale/orientation using Hough voting

– In training, each point has known position/scale/orientation
wrt whole object

– Matched points vote for the position, scale, and orientation
of the entire object

– Bins for x, y, scale, orientation
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)

• Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification

– For each bin with at least 3 keypoints

– Iterate between least squares fit and checking for inliers and
outliers

4. Report object if > T inliers (T is typically 3, can be computed to
match some probabilistic threshold)

Examples of recognized objects

View interpolation

• Training
– Given images of different

viewpoints
– Cluster similar viewpoints

using feature matches
– Link features in adjacent

views

• Recognition

– Feature matches may be
spread over several
training viewpoints

 Use the known links to
“transfer votes” to other
viewpoints

Slide credit: David Lowe

[Lowe01]

Applications

• Sony Aibo
(Evolution Robotics)

• SIFT usage
– Recognize

docking station
– Communicate

with visual cards

• Other uses
– Place recognition
– Loop closure in SLAM

K. Grauman, B. Leibe 37
Slide credit: David Lowe

Location Recognition

Slide credit: David Lowe

Training

[Lowe04]

Another application: category recognition

• Goal: identify what type of object is in the image

• Approach: align to known objects and choose
category with best match

“Shape matching and object recognition using low distortion correspondence”,

Berg et al., CVPR 2005: http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

?

http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf
http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf
http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

Summary of algorithm

• Input: query q and exemplar e
• For each: sample edge points and

create “geometric blur” descriptor
• Compute match cost c to match

points in q to each point in e
• Compute deformation cost H that

penalizes change in orientation and
scale for pairs of matched points

• Solve a binary quadratic program to
get correspondence that minimizes c
and H, using thin-plate spline
deformation

• Record total cost for e, repeat for all
exemplars, choose exemplar with
minimum cost

Input, Edge Maps

Geometric Blur

Feature Points

Correspondences

Examples of Matches

Examples of Matches

Other ideas worth being aware of

• Thin-plate splines: combines global affine
warp with smooth local deformation

• Robust non-rigid point matching:
http://noodle.med.yale.edu/~chui/tps-rpm.html
(includes code, demo, paper)

http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html

Think about your final projects
• Strongly encouraged to work in groups of 2-4 (but if you have a good

reason to work by self, could be ok)

• Projects don’t need to be of publishable originality but should evince
independent effort to learn about a new topic, try something new, or
apply to an application of interest

• Project ideas from Cinda Hereen
1. Classroom attendance: I teach in Siebel 1404, and I'd like to be able to

track attendance by taking photos of the room (students who opt out can
just put their heads down). Extra facts in the problem: a) I have photo
rosters; b) i'm willing to use a tagging system wherein students can verify
our assertions; c) the results don't have to be exact.

2. Medication tracking: I would like for a person to be able to chart his/her
medicine consumption by taking a photo of the med bottles. Extra facts: a.
it has to work on a mobile device (limited computation), b. it could be a
matching problem--could photograph known meds and use the photos as
the labels.

3. Thermometer reading: In a related problem, i'd like to be able to take a
picture of a thermometer (digital or analogue) and record it's reading.

Key concepts

• Alignment

– Hough transform
– RANSAC
– ICP

• Object instance recognition
– Find keypoints, compute

descriptors
– Match descriptors
– Vote for / fit affine parameters
– Return object if # inliers > T

