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Today’s class 

 

• Alignment (continued) 

 

• Object instance recognition 

 

• Example of alignment-based category 
recognition 



Line Fitting Demo 

 



Alignment 

 

• Alignment: find parameters of model that maps 
one set of points to another 

 

• Typically want to solve for a global transformation 
that accounts for *most* true correspondences 

 

• Difficulties 

– Noise (typically 1-3 pixels) 

– Outliers (often 50%)  

– Many-to-one matches or multiple objects 

 

 



Parametric (global) warping 

 Transformation T is a coordinate-changing machine: 
     p’ = T(p) 
  
 What does it mean that T is global? 

– Is the same for any point p 
– can be described by just a few numbers (parameters) 

  
 For linear transformations, we can represent T as a matrix 
       p’ = Tp 

 

T 

p = (x,y) p’ = (x’,y’) 
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Common transformations 

translation rotation aspect 

affine perspective 

original 

Transformed 

Slide credit (next few slides): 

A. Efros and/or S. Seitz 



Scaling 
• Scaling a coordinate means multiplying each of its components by a 

scalar 

• Uniform scaling means this scalar is the same for all components: 

 2 



• Non-uniform scaling: different scalars per component: 

 

Scaling 

X  2, 

Y  0.5 



Scaling 

• Scaling operation: 

 

 

• Or, in matrix form: 

byy

axx
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scaling matrix S 



2-D Rotation 

 

(x, y) 

(x’, y’) 

x’ = x cos() - y sin() 

y’ = x sin() + y cos() 



2-D Rotation 

Polar coordinates… 

x = r cos (f) 

y = r sin (f) 

x’ = r cos (f + ) 

y’ = r sin (f + ) 

 

Trig Identity… 

x’ = r cos(f) cos() – r sin(f) sin() 

y’ = r sin(f) cos() + r cos(f) sin() 

 

Substitute… 

x’ = x cos() - y sin() 

y’ = x sin() + y cos()  

(x, y) 

(x’, y’) 

f 



2-D Rotation 
This is easy to capture in matrix form: 

 

 

 

 

 

 

Even though sin() and cos() are nonlinear functions of , 

– x’ is a linear combination of x and y 

– y’ is a linear combination of x and y 

 

What is the inverse transformation? 

– Rotation by – 

– For rotation matrices 
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Basic 2D transformations 

Translate Rotate 

Shear Scale 
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Affine 

Affine is any combination of 

translation, scale, rotation, 

shear 



Affine Transformations 

Affine transformations are combinations of  

• Linear transformations, and 

• Translations 

Properties of affine transformations: 

• Lines map to lines 

• Parallel lines remain parallel 

• Ratios are preserved 

• Closed under composition 
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Projective Transformations 
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'Projective transformations are combos of  

• Affine transformations, and 

• Projective warps 

Properties of projective transformations: 

• Lines map to lines 

• Parallel lines do not necessarily remain parallel 

• Ratios are not preserved 

• Closed under composition 

• Models change of basis 

• Projective matrix is defined up to a scale (8 DOF) 



2D image transformations (reference table) 



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Given matched points in {A} and {B}, estimate the translation of the object 
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Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Least squares solution 
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1. Write down objective function 

2. Derived solution 

a) Compute derivative 

b) Compute solution 

3. Computational solution 

a) Write in form Ax=b 

b) Solve using pseudo-inverse or 

eigenvalue decomposition 
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Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

RANSAC solution 
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1. Sample a set of matching points (1 pair) 

2. Solve for transformation parameters 

3. Score parameters with number of inliers 

4. Repeat steps 1-3 N times 

Problem: outliers 

A4 

A5 

B5 

B4 



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Hough transform solution 
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1. Initialize a grid of parameter values 

2. Each matched pair casts a vote for 

consistent values 

3. Find the parameters with the most votes 

4. Solve using least squares with inliers 

A4 

A5 A6 

B4 

B5 B6 

Problem: outliers, multiple objects, and/or many-to-one matches 



Example: solving for translation 

(tx, ty) 

Problem: no initial guesses for correspondence 
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What if you want to align but have no prior 
matched pairs? 

 

• Hough transform and RANSAC not applicable 

 

• Important applications 

 

Medical imaging: match brain 

scans or contours 

Robotics: match point clouds 



Iterative Closest Points (ICP) Algorithm 

 Goal: estimate transform between two dense sets 
of points 

 
1. Initialize transformation (e.g., compute difference in means 

and scale) 

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2} 

3. Estimate transformation parameters  
– e.g., least squares or robust least squares 

4. Transform the points in {Set 1} using estimated parameters 

5. Repeat steps 2-4 until change is very small 

 

 

 



Example: solving for translation 

(tx, ty) 

Problem: no initial guesses for correspondence 
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xICP solution 
1. Find nearest neighbors for each point 

2. Compute transform using matches 

3. Move points using transform 

4. Repeat steps 1-3 until convergence 



Example: aligning boundaries 
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚  

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image) 

3. Get nearest neighbors: for each point 𝑝𝑖 
 find corresponding 

match(i) = argmin
𝑗

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)  

4. Compute transformation T based on matches 

5. Warp points p according to T 

6. Repeat 3-5 until convergence 

p 
q 



Algorithm Summary 
• Least Squares Fit  

– closed form solution 
– robust to noise 
– not robust to outliers 

• Robust Least Squares 
– improves robustness to noise 
– requires iterative optimization 

• Hough transform 
– robust to noise and outliers 
– can fit multiple models 
– only works for a few parameters (1-4 typically) 

• RANSAC 
– robust to noise and outliers 
– works with a moderate number of parameters (e.g, 1-8) 

• Iterative Closest Point (ICP) 
– For local alignment only: does not require initial correspondences  



Object Instance Recognition 

1. Match keypoints to 
object model 

 

2. Solve for affine 
transformation 
parameters 

 

3. Score by inliers and 
choose solutions with 
score above threshold 

A1 

A2 
A3 

Affine 
Parameters 

Choose hypothesis with max 

score above threshold 

# Inliers 

Matched 

keypoints 

This 

Class 



Overview of Keypoint Matching 

K. Grauman, B. Leibe 

N
 p

ix
e

ls
 

N pixels 

Af

e.g. color 

Bf

e.g. color 

A1 

A2 A3 

Tffd BA ),(

1. Find a set of    

    distinctive key- 

    points  

3. Extract and  

    normalize the     

    region content   

2. Define a region  

    around each  

    keypoint    

4. Compute a local  

    descriptor from the  

    normalized region 

5. Match local  

    descriptors 



Finding the objects (overview) 

1. Match interest points from input image to database image 

2. Matched points vote for rough position/orientation/scale of 
object 

3. Find position/orientation/scales that have at least three votes 

4. Compute affine registration and matches using iterative least 
squares with outlier check 

5. Report object if there are at least T matched points 

Input 

Image Stored 

Image 



Matching Keypoints 

 

• Want to match keypoints between: 

1. Query image 

2. Stored image containing the object 

 

• Given descriptor x0, find two nearest 
neighbors x1, x2 with distances d1, d2  

 

• x1 matches x0 if d1/d2 < 0.8 

– This gets rid of 90% false matches, 5% of true 
matches in Lowe’s study 



Affine Object Model 

• Accounts for 3D rotation of a surface under 
orthographic projection 

 

 



Affine Object Model 

• Accounts for 3D rotation of a surface under 
orthographic projection 

 

 

What is the minimum number of matched points that we need? 
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Finding the objects (in detail) 
1. Match interest points from input image to database image 

2. Get location/scale/orientation using Hough voting 

– In training, each point has known position/scale/orientation 
wrt whole object 

– Matched points vote for the position, scale, and orientation 
of the entire object 

– Bins for x, y, scale, orientation 
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation) 

• Vote for two closest bin centers in each direction (16 votes total) 

3. Geometric verification 

– For each bin with at least 3 keypoints 

– Iterate between least squares fit and checking for inliers and 
outliers 

4. Report object if > T inliers (T is typically 3, can be computed to 
match some probabilistic threshold) 



Examples of recognized objects 



View interpolation 

• Training 
– Given images of different 

viewpoints 
– Cluster similar viewpoints 

using feature matches 
– Link features in adjacent 

views 
 

 
• Recognition 

– Feature matches may be 
spread over several  
training viewpoints 

 Use the known links to 
“transfer votes” to other 
viewpoints 
 

Slide credit: David Lowe 

[Lowe01] 



Applications 

• Sony Aibo 
(Evolution Robotics) 
 

• SIFT usage 
– Recognize  

docking station 
– Communicate  

with visual cards 
 

• Other uses 
– Place recognition 
– Loop closure in SLAM 

K. Grauman, B. Leibe 37 
Slide credit: David Lowe 



Location Recognition 

 

Slide credit: David Lowe 

Training 

[Lowe04] 



Another application: category recognition 

• Goal: identify what type of object is in the image 

• Approach: align to known objects and choose 
category with best match 

“Shape matching and object recognition using low distortion correspondence”, 

Berg et al., CVPR 2005: http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf 

? 

http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf
http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf
http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf


Summary of algorithm 

• Input: query q and exemplar e 
• For each: sample edge points and 

create “geometric blur” descriptor 
• Compute match cost c to match 

points in q to each point in e 
• Compute deformation cost H that 

penalizes change in orientation and 
scale for pairs of matched points 

• Solve a binary quadratic program to 
get correspondence that minimizes c 
and H, using thin-plate spline 
deformation 

• Record total cost for e, repeat for all 
exemplars, choose exemplar with 
minimum cost 

Input, Edge Maps 

Geometric Blur 

Feature Points 

Correspondences 



Examples of Matches 



Examples of Matches 



Other ideas worth being aware of 

• Thin-plate splines: combines global affine 
warp with smooth local deformation 

 

• Robust non-rigid point matching: 
http://noodle.med.yale.edu/~chui/tps-rpm.html 
(includes code, demo, paper) 

http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html
http://noodle.med.yale.edu/~chui/tps-rpm.html


Think about your final projects 
• Strongly encouraged to work in groups of 2-4 (but if you have a good 

reason to work by self, could be ok) 
 

• Projects don’t need to be of publishable originality but should evince 
independent effort to learn about a new topic, try something new, or 
apply to an application of interest 
 

• Project ideas from Cinda Hereen 
1. Classroom attendance:  I teach in Siebel 1404, and I'd like to be able to 

track attendance by taking photos of the room (students who opt out can 
just put their heads down).  Extra facts in the problem:  a) I have photo 
rosters; b) i'm willing to use a tagging system wherein students can verify 
our assertions; c) the results don't have to be exact. 

2. Medication tracking:  I would like for a person to be able to chart his/her 
medicine consumption by taking a photo of the med bottles.  Extra facts: a. 
it has to work on a mobile device (limited computation), b. it could be a 
matching problem--could photograph known meds and use the photos as 
the labels.   

3. Thermometer reading: In a related problem, i'd like to be able to take a 
picture of a thermometer (digital or analogue) and record it's reading. 

 



Key concepts 

 
• Alignment 

– Hough transform 
– RANSAC 
– ICP 

 
 

• Object instance recognition 
– Find keypoints, compute 

descriptors 
– Match descriptors 
– Vote for / fit affine parameters 
– Return object if # inliers > T 

 
 


