Fitting and Registration

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Announcements

HW 1 due today

Early feedback form

Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Fitting and Alignment

- Design challenges
 - Design a suitable goodness of fit measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an optimization method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Simple example: Fitting a line

Least squares line fitting

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$
$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

Matlab:
$$p = A \setminus y$$
;

$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Longrightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

If
$$(a^2+b^2=1)$$
 then
Distance between point (x_i, y_i) is $|ax_i + by_i + c|$

proof:

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

Total least squares

If
$$(a^2+b^2=1)$$
 then
Distance between point (x_i, y_i) is $|ax_i + by_i + c|$

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

Total least squares

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0$$

Find
$$(a,b,c)$$
 to minimize the sum of squared perpendicular distances
$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0$$

$$C = -\frac{a}{n} \sum_{i=1}^{n} x_i - \frac{b}{n} \sum_{i=1}^{n} y_i = -a\bar{x} - b\bar{y}$$

$$E = \sum_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix}^2 = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$$

minimize $\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$ s.t. $\mathbf{p}^T \mathbf{p} = 1$ \Rightarrow minimize $\frac{\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}}{\mathbf{p}^T \mathbf{p}}$

Solution is eigenvector corresponding to smallest eigenvalue of A^TA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient

Recap: Two Common Optimization Problems

Problem statement

Solution

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$$
 (matlab)

Problem statement

Solution

minimize
$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$$
 s.t. $\mathbf{x}^T \mathbf{x} = 1$

$$[\mathbf{v}, \lambda] = \operatorname{eig}(\mathbf{A}^T \mathbf{A})$$

minimize
$$\frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

$$\lambda_1 < \lambda_{2..n} : \mathbf{x} = \mathbf{v}_1$$

non - trivial lsq solution to $\mathbf{A}\mathbf{x} = 0$

Least squares (global) optimization

Good

- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \rho(\mathbf{u}_{i}(\mathbf{x}_{i},\boldsymbol{\theta});\boldsymbol{\sigma}) \qquad u^{2} = \sum_{i=1}^{n} (y_{i} - mx_{i} - b)^{2}$$

 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters ϑ ρ – robust function with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals

Robust Estimator

- 1. Initialize: e.g., choose θ by least squares fit and $\sigma = 1.5 \cdot \text{median}(error)$
- 2. Choose params to minimize: $\sum_{i} \frac{error(\theta, data_{i})^{2}}{\sigma^{2} + error(\theta, data_{i})^{2}}$ E.g., numerical optimization
- 3. Compute new $\sigma = 1.5 \cdot \text{median}(error)$

4. Repeat (2) and (3) until convergence

Demo – part 1

Other ways to search for parameters (for when no closed form solution exists)

Line search

- 1. For each parameter, step through values and choose value that gives best fit
- 2. Repeat (1) until no parameter changes

Grid search

- Propose several sets of parameters, evenly sampled in the joint set
- 2. Choose best (or top few) and sample joint parameters around the current best; repeat

Gradient descent

- 1. Provide initial position (e.g., random)
- 2. Locally search for better parameters by following gradient

Hypothesize and test

- 1. Propose parameters
 - Try all possible
 - Each point votes for all consistent parameters
 - Repeatedly sample enough points to solve for parameters
- 2. Score the given parameters
 - Number of consistent points, possibly weighted by distance
- 3. Choose from among the set of parameters
 - Global or local maximum of scores
- 4. Possibly refine parameters using inliers

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

$$y = m x + b$$

Hough transform

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

$$x \cos \theta + y \sin \theta = \rho$$

Hough transform - experiments

Hough transform - experiments

Need to adjust grid size or smooth

Hough transform - experiments

Issue: spurious peaks due to uniform noise

1. Image → Canny

2. Canny → Hough votes

3. Hough votes → Edges

Find peaks and post-process

Hough transform example

Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
 - Using oriented gradients
- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

Finding circles (x_0, y_0, r) using Hough transform

- Fixed r
- Variable r

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

(RANdom SAmple Consensus):

Fischler & Bolles in '81.

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

 $N_{I} = 6$

Algorithm:

- **Sample** (randomly) the number of points required to fit the model (#=2)
- Solve for model parameters using samples
- **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$

$$N = log(1-p)/log(1-(1-e)^s)$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Demo – part 2

What if you want to align but have no prior matched pairs?

Hough transform and RANSAC not applicable

Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- Initialize transformation (e.g., compute difference in means and scale)
- **2. Assign** each point in {Set 1} to its nearest neighbor in {Set 2}
- 3. Estimate transformation parameters
 - e.g., least squares or robust least squares
- **4. Transform** the points in {Set 1} using estimated parameters
- **5. Repeat** steps 2-4 until change is very small

Algorithm Summary

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Robust Least Squares
 - improves robustness to noise
 - requires iterative optimization
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
 - For local alignment only: does not require initial correspondences

Given matched points in {A} and {B}, estimate the translation of the object

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or eigenvalue decomposition

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_1^B - x_1^A \\ y_1^B - y_1^A \\ \vdots \\ x_n^B - x_n^A \\ y_n^B - y_n^A \end{bmatrix}$$

Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Next class: Object Recognition

Keypoint-based object instance recognition and search