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Announcements 

 

• HW 1 due today 

 

• Early feedback form 

 

 

 

 



  

 Fitting: find the parameters of a model that 
best fit the data 

 

 

 Alignment: find the parameters of the 
transformation that best align matched points 

 

 



Fitting and Alignment 

• Design challenges 

– Design a suitable goodness of fit measure 

• Similarity should reflect application goals 

• Encode robustness to outliers and noise 

– Design an optimization method 

• Avoid local optima 

• Find best parameters quickly 

 

 



Fitting and Alignment: Methods 

 

• Global optimization / Search for parameters 

– Least squares fit 

– Robust least squares 

– Iterative closest point (ICP) 

 

• Hypothesize and test 

– Generalized Hough transform 

– RANSAC 

 



Simple example: Fitting a line 

 



Least squares line fitting 
•Data: (x1, y1), …, (xn, yn) 

•Line equation: yi = m xi + b 

•Find (m, b) to minimize  
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Matlab: p = A \ y; 

Modified from S. Lazebnik 



Problem with “vertical” least squares 

• Not rotation-invariant 

• Fails completely for 
vertical lines 

Slide from S. Lazebnik 



Total least squares 
If (a2+b2=1) then  

Distance between point (xi, yi) is  

 |axi + byi + c| 
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ax+by+c=0 

Unit normal: 

N=(a, b) 

Slide modified from S. Lazebnik 

proof: 

http://mathworld.wolfram.com/Point-

LineDistance2-Dimensional.html 

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html


Total least squares 
If (a2+b2=1) then  

Distance between point (xi, yi) is  

 |axi + byi + c| 

 

Find (a, b, c) to minimize the sum of 
squared perpendicular distances 
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Unit normal: 

N=(a, b) 

Slide modified from S. Lazebnik 



Total least squares 
Find (a, b, c) to minimize the sum of 
squared perpendicular distances 
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Solution is eigenvector corresponding to smallest eigenvalue of ATA 

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient 
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Slide modified from S. Lazebnik 

http://en.wikipedia.org/wiki/Rayleigh_quotient


Recap: Two Common Optimization Problems 

Problem statement Solution 
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bAx  osolution t squaresleast bAx \

2
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(matlab) 



Least squares (global) optimization 

Good 
• Clearly specified objective 

• Optimization is easy 

 

Bad 
• May not be what you want to optimize  

• Sensitive to outliers 
– Bad matches, extra points 

• Doesn’t allow you to get multiple good fits 
– Detecting multiple objects, lines, etc. 

 



Robust least squares (to deal with outliers) 
General approach:  
    minimize 

 
  

 ui (xi, θ) – residual of ith point w.r.t. model parameters θ 
ρ – robust function with scale parameter σ   
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The robust function ρ  

• Favors a configuration  

with small residuals 

• Constant penalty for large 

residuals 
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Slide from S. Savarese 



Robust Estimator  

 

1. Initialize: e.g., choose 𝜃 by least squares fit and 

 

 

2. Choose params to minimize: 

– E.g., numerical optimization 

 

3. Compute new  

 

4. Repeat (2) and (3) until convergence 
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Demo – part 1 

 



Other ways to search for parameters (for 
when no closed form solution exists) 

• Line search 
1. For each parameter, step through values and choose value 

that gives best fit 
2. Repeat (1) until no parameter changes 

 
• Grid search 

1. Propose several sets of parameters, evenly sampled in the 
joint set 

2. Choose best (or top few) and sample joint parameters around 
the current best; repeat 

 
• Gradient descent 

1. Provide initial position (e.g., random) 
2. Locally search for better parameters by following gradient 



Hypothesize and test 

1. Propose parameters 
– Try all possible 

– Each point votes for all consistent parameters 

– Repeatedly sample enough points to solve for parameters 

 

2. Score the given parameters 
– Number of consistent points, possibly weighted by 

distance 

 

3. Choose from among the set of parameters 
– Global or local maximum of scores 

 

4. Possibly refine parameters using inliers 



Hough Transform: Outline 

 

1. Create a grid of parameter values 

 

2. Each point votes for a set of parameters, 
incrementing those values in grid 

 

3. Find maximum or local maxima in grid 

 

 



x 

y 

b 

m 

y = m x + b 

Hough transform 

Given a set of points, find the curve or line that explains 

the data points best 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959  

Hough space 

Slide from S. Savarese 



x 

y 

b 

m 

x 

y m 
3 5 3 3 2 2 

3 7 11 10 4 3 

2 3 1 4 5 2 

2 1 0 1 3 3 

b 

Hough transform 

Slide from S. Savarese 



x 

y 

Hough transform 

Issue : parameter space [m,b] is unbounded… 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959  

Hough space 

    siny  cosx

 



Use a polar representation for the parameter space  

 



Slide from S. Savarese 



features votes 

Hough transform - experiments 

Slide from S. Savarese 



features votes 

 

Need to adjust grid size or smooth 

Hough transform - experiments 

Noisy data 

Slide from S. Savarese 



Issue: spurious peaks due to uniform noise 

features votes 

Hough transform - experiments 

Slide from S. Savarese 



1. Image  Canny 

 



2. Canny  Hough votes 

 



3. Hough votes  Edges  

  

Find peaks and post-process 



Hough transform example 

http://ostatic.com/files/images/ss_hough.jpg 



Finding lines using Hough transform 

• Using m,b parameterization 

• Using r, theta parameterization 

– Using oriented gradients 

• Practical considerations 

– Bin size 

– Smoothing 

– Finding multiple lines 

– Finding line segments 



Finding circles (x0, y0, r) using Hough transform 

• Fixed r 

• Variable r 



Hough transform conclusions 
Good 
• Robust to outliers: each point votes separately 
• Fairly efficient (much faster than trying all sets of parameters) 
• Provides multiple good fits 

 

Bad 
• Some sensitivity to noise 
• Bin size trades off between noise tolerance, precision, and 

speed/memory 
– Can be hard to find sweet spot 

• Not suitable for more than a few parameters 
– grid size grows exponentially 

 

Common applications 
• Line fitting (also circles, ellipses, etc.) 
• Object instance recognition (parameters are affine transform) 
• Object category recognition  (parameters are position/scale) 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Fischler & Bolles in ‘81. 

(RANdom SAmple Consensus) : 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Illustration by Savarese 

Line fitting example 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Line fitting example 





RANSAC 

6IN

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Line fitting example 





RANSAC 

14IN
Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 



How to choose parameters? 
• Number of samples N 

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e ) 

• Number of sampled points s 
– Minimum number needed to fit the model 

• Distance threshold  
– Choose   so that a good point with noise is likely (e.g., prob=0.95) within threshold 

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

 

    s
e11log/p1logN 

proportion of outliers e 

s 5% 10% 20% 25% 30% 40% 50% 

2 2 3 5 6 7 11 17 

3 3 4 7 9 11 19 35 

4 3 5 9 13 17 34 72 

5 4 6 12 17 26 57 146 

6 4 7 16 24 37 97 293 

7 4 8 20 33 54 163 588 

8 5 9 26 44 78 272 1177 

modified from  M. Pollefeys 



RANSAC conclusions 

Good 
• Robust to outliers 
• Applicable for larger number of objective function parameters 

than Hough transform 
• Optimization parameters are easier to choose than Hough 

transform 

 

Bad 
• Computational time grows quickly with fraction of outliers 

and number of parameters  
• Not good for getting multiple fits 

 

Common applications 
• Computing a homography (e.g., image stitching) 
• Estimating fundamental matrix (relating two views) 



Demo – part 2 

 



What if you want to align but have no prior 
matched pairs? 

 

• Hough transform and RANSAC not applicable 

 

• Important applications 

 

Medical imaging: match brain 

scans or contours 

Robotics: match point clouds 



Iterative Closest Points (ICP) Algorithm 

 Goal: estimate transform between two dense sets 
of points 

 
1. Initialize transformation (e.g., compute difference in means 

and scale) 

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2} 

3. Estimate transformation parameters  
– e.g., least squares or robust least squares 

4. Transform the points in {Set 1} using estimated parameters 

5. Repeat steps 2-4 until change is very small 

 

 

 



Algorithm Summary 
• Least Squares Fit  

– closed form solution 
– robust to noise 
– not robust to outliers 

• Robust Least Squares 
– improves robustness to noise 
– requires iterative optimization 

• Hough transform 
– robust to noise and outliers 
– can fit multiple models 
– only works for a few parameters (1-4 typically) 

• RANSAC 
– robust to noise and outliers 
– works with a moderate number of parameters (e.g, 1-8) 

• Iterative Closest Point (ICP) 
– For local alignment only: does not require initial correspondences  



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Given matched points in {A} and {B}, estimate the translation of the object 
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Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Least squares solution 
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1. Write down objective function 

2. Derived solution 

a) Compute derivative 

b) Compute solution 

3. Computational solution 

a) Write in form Ax=b 

b) Solve using pseudo-inverse or 

eigenvalue decomposition 




























































A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

RANSAC solution 
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1. Sample a set of matching points (1 pair) 

2. Solve for transformation parameters 

3. Score parameters with number of inliers 

4. Repeat steps 1-3 N times 

Problem: outliers 

A4 

A5 

B5 

B4 



Example: solving for translation 

A1 

A2 A3 
B1 

B2 B3 

Hough transform solution 
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1. Initialize a grid of parameter values 

2. Each matched pair casts a vote for 

consistent values 

3. Find the parameters with the most votes 

4. Solve using least squares with inliers 

A4 

A5 A6 

B4 

B5 B6 

Problem: outliers, multiple objects, and/or many-to-one matches 



Example: solving for translation 

(tx, ty) 

Problem: no initial guesses for correspondence 
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xICP solution 
1. Find nearest neighbors for each point 

2. Compute transform using matches 

3. Move points using transform 

4. Repeat steps 1-3 until convergence 



Next class: Object Recognition 

 

• Keypoint-based object instance recognition 
and search 

 

 

 


