Locating and Describing Interest Points

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images

This section: correspondence and alignment

 Alignment: solving the transformation that makes two things match better

Example: fitting an 2D shape template

Example: fitting a 3D object model

Example: estimating "fundamental matrix" that corresponds two views

Example: tracking points

Your problem 1 for HW 2!

HW₂

- Interest point detection and tracking
 - Detect trackable points
 - Track them across 50 frames
 - In HW 3, you will use these tracked points for structure from motion

frame 0

frame 22

frame 49

HW₂

- Alignment of object edge images
 - Compute a transformation that aligns two edge maps

HW 2

- Initial steps of object alignment
 - Derive basic equations for interest-point based alignment

This class: interest points

 Note: "interest points" = "keypoints", also sometimes called "features"

- Many applications
 - tracking: which points are good to track?
 - recognition: find patches likely to tell us something about object category
 - 3D reconstruction: find correspondences across different views

Human eye movements

Yarbus eye tracking

Human eye movements

Change blindness: http://www.simonslab.com/videos.html

This class: interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Overview of Keypoint Matching

- 1. Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Key trade-offs

Detection

More Repeatable

Robust detection
Precise localization

More Points

Robust to occlusion
Works with less texture

Description

More Distinctive
Minimize wrong matches

More Flexible
Robust to expected variations
Maximize correct matches

Choosing interest points

Where would you tell your friend to meet you?

Choosing interest points

Where would you tell your friend to meet you?

Many Existing Detectors Available

Hessian & Harris

Laplacian, DoG

Harris-/Hessian-Laplace

Harris-/Hessian-Affine

EBR and IBR

MSER

Salient Regions

Others...

[Beaudet '78], [Harris '88]

[Lindeberg '98], [Lowe 1999]

[Mikolajczyk & Schmid '01]

[Mikolajczyk & Schmid '04]

[Tuytelaars & Van Gool '04]

[Matas '02]

[Kadir & Brady '01]

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

Intuition: Search for local neighborhoods where the image content has two main directions (eigenvectors).

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_{I}, \sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 1. Image derivatives (optionally, blur first)

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Harris Detector: Mathematics

$$M = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Want large eigenvalues, and small ratio $\frac{\lambda_1}{\lambda_2} < t$

2. We know

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

3. Leads to

$$\det M - k \cdot \operatorname{trace}^{2}(M) > t$$
(k :empirical constant, $k = 0.04-0.06$)

Nice brief derivation on wikipedia

Harris Detector – Responses [Harris88]

Harris Detector - Responses [Harris88]

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Intuition: Search for strong curvature in two orthogonal directions

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

In Matlab:

$$I_{xx}.*I_{yy}-(I_{xy})^2$$

Hessian Detector – Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Hessian Detector – Responses [Beaudet78]

So far: can localize in x-y, but not scale

How to find corresponding patch sizes?

Automatic Scale Selection

Function responses for increasing scale (scale signature)

What Is A Useful Signature Function?

• Difference-of-Gaussian = "blob" detector

Difference-of-Gaussian (DoG)

DoG – Efficient Computation

Computation in Gaussian scale pyramid

Find local maxima in position-scale space of Difference-of-Gaussian

Results: Difference-of-Gaussian

Orientation Normalization

Compute orientation histogram

[Lowe, SIFT, 1999]

- Select dominant orientation
- Normalize: rotate to fixed orientation

Maximally Stable Extremal Regions [Matas '02]

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

Example Results: MSER

Available at a web site near you...

- For most local feature detectors, executables are available online:
 - http://www.robots.ox.ac.uk/~vgg/research/affine
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - http://www.vision.ee.ethz.ch/~surf

Local Descriptors

- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient

- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Local Descriptors: SIFT Descriptor

Histogram of oriented gradients

- Captures important texture information
- Robust to small translations / affine deformations

[Lowe, ICCV 1999]

Details of Lowe's SIFT algorithm

- Run DoG detector
 - Find maxima in location/scale space
 - Remove edge points
- Find all major orientations

 $\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$

 $\mathbf{H} = \left[\begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right]$

- Bin orientations into 36 bin histogram
 - Weight by gradient magnitude
 - Weight by distance to center (Gaussian-weighted mean)
- Return orientations within 0.8 of peak
 - Use parabola for better orientation fit
- For each (x,y,scale,orientation), create descriptor:
 - Sample 16x16 gradient mag. and rel. orientation
 - Bin 4x4 samples into 4x4 histograms
 - Threshold values to max of 0.2, divide by L2 norm
 - Final descriptor: 4x4x8 normalized histograms

Matching SIFT Descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

SIFT Repeatability

SIFT Repeatability

SIFT Repeatability

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images

⇒ 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

$$Count = 4$$

:

Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Local Descriptors: Geometric Blur

Berg & Malik, CVPR 2001

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	$_{\mathrm{Blob}}$	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	√			√			+++	+++	+++	++
Hessian		\checkmark		\checkmark			++	++	++	+
SUSAN	\checkmark			√			++	++	++	+++
Harris-Laplace	√	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		√	\checkmark		++	++	++	+++
Harris-Affine	√	(√)		√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			\checkmark	\checkmark	\checkmark	+++	+++	+	+
MSER				√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	(√)	()	+	+	+	+

Choosing a descriptor

Again, need not stick to one

For object instance recognition or stitching,
 SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

Next time

Feature tracking